
PRmalloc: Leveraging Predictability for Deep
Learning Memory Allocation

Wencong Xiao, Shiru Ren, Tongxuan Liu, Yong Li
{wencong.xwc,shiru.rsr,tongxuan.ltx,jiufeng.ly}@alibaba-inc.com

Alibaba Group

Abstract
We introduce PRmalloc, a new memory allocator that opti-
mizes the memory management of deep learning. Benefiting
from the uniquely predictable feature of repeated iterations
in deep learning training, PRmalloc leverages the domain-
specific knowledge to better cache and reuse large mem-
ory blocks, cutting down the system overhead of memory
allocation and saving memory footprint significantly. We
have implemented PRmalloc in TensorFlow, a popular deep
learning framework. Our evaluation shows that PRmalloc
improves the end-to-end training performance of the state-
of-art recommendation model up to 1.8×.
ACM Reference format:
Wencong Xiao, Shiru Ren, Tongxuan Liu, Yong Li. 2019. PRmalloc:
Leveraging Predictability for Deep Learning Memory Allocation.
In Proceedings of Workshop on AI Systems at SOSP 2019, Ontario,
Canada, Oct 27, 2019 (AI Systems ’19), 3 pages.

1 Introduction
An increasingly popular trend over the last few years is deep
learning for artificial intelligence. Recommendation, as a cru-
cial artificial intelligence application to uncover user intents,
is widely deployed in many companies, such as Amazon and
Alibaba. The industrial-scale deep learning recommenders
usually build on computational frameworks (e.g., Tensor-
Flow [3]) to train models with massive sparse user behavior
data on CPU, consuming a large amount of host memory.
Even though with the state-of-art memory management

module embedded, we observe that recommendation applica-
tions on TensorFlow usually occupy more than 50% memory
compared with the real requirement. Surprisingly, detailed
profiling reports up to 900K/s minor page fault during job
execution, which hurts the overall system performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
AI Systems ’19, Oct 27, 2019, Ontario, Canada
© 2019 Association for Computing Machinery.
ACM ISBN .

Run Neural Network
(first K mini-batches)

Run Neural Network
(remaining mini-batches)

MemoryPlanner

Malloc Library

Allocation
Statistic

Allocate/Deallocate Tensor

Heuristic Memory
Reuse Policy Cache

TensorPoolAllocator

Allocate/Deallocate Tensor

new/delete cache miss then new/delete

Optimal
Policy

Figure 1. Architecture overview.
More specially, TensorFlow relies on third-party memory

libraries ptmalloc or jemalloc to manage the CPU memory.
Those memory libraries prominently improve the perfor-
mance for web server [2], benefiting from a per-thread mem-
ory pool design for small memory blocks (e.g., < 32KB).

However, we argue that existing memory allocators are a
poor fit to deep learning. The tensors used in training usually
require largememory blocks (~MB), and the summary of total
required memory can be tens of GB [6]. Our statistic on a
typical recommendation model (i.e., DeepCTR [1]) shows
that a sub-second mini-batch training triggers more than
1500 large memory allocation (>32KB), counting for more
than 98% of the total memory request.

To address the challenges mentioned above, we exploit the
predictability of deep learning training. A deep learning train-
ing job includes millions ofmini-batches, each mini-batch is a
traversal on a deterministic data flow graph for computation.
Therefore, in the view of an application, most of the allo-
cate/deallocate requests are consistent among mini-batches.
Furthermore, the dependency relationship of computation
can also be utilized to schedule memory block recycle [5].

We introduce PRmalloc, a brand new predictable reusable
memory allocator taking advantage of such remarkable pre-
dictability. As indicated in Figure 1, in contrast to conven-
tional memory allocators, PRmalloc adapts to the memory
usage characteristics of different deep learning training appli-
cations, by learning from the memory block life-cycle at the
early stages through MemoryPlanner module. The collected
domain knowledge helps to generate heuristic policy into
TensorPoolAllocator to better schedule the memory recycle.
Such a design has two vital benefits. First, memory allocator
can cache the large memory block, saving the minor page
fault introduced by memory allocation system call. Second,
a better memory reuse plan can be learned to reduce the
memory footprint, minimizing the overall resource usage.



AI Systems ’19, Oct 27, 2019, Ontario, Canada W. Xiao et al.

A

...

MemoryPlanner (K mini-batches statistic)

...
...

bin [32KB, 36KB]

...

bin (52KB, 56KB]

...

F(t0, t5, 33KB)

...

bin policy: interval=4KB other
policies

C(t0, t2, 54KB) B(t0, t1, 56KB)

A(t3, t6, 68KB)

D(t6, t7, 54KB)

bin (64KB, 68KB]

...

E(t2, t5, 35KB)

bin [32KB, 36KB]

t0 t1 t2 t3 t4 t5 t6 t7

36KB

... tn

bin (52KB, 56KB]

t0 t1 t2 t3 t4 t5 t6 t7

56KB

... tn

bin (64KB, 68KB]

t0 t1 t2 t3 t4 t6 t7

68KB

... tn

EB

F

D

C

68KB

MemoryPlanner (Heuristic memory reuse policy)

t5

Figure 2. A memory reuse example.
Preliminary experiments show PRmalloc boosts the state-

of-art recommendation models training by 1.8×, benefiting
from lower memory footprint and fewer page fault.

2 PRmalloc
Motivated by the unique memory characteristics, we design
PRmalloc, a statistically-based heuristic memory manage-
ment library especially for deep learning applications. First,
we outline the architecture of PRmalloc. Second, we discuss
how it can effectively boost the end-to-end system perfor-
mance by identifying and utilizing the memory reuse infor-
mation of deep learning between and within mini-batches.

2.1 System architecture and workflow
We implement PRmalloc in TensorFlow. As illustrated in Fig-
ure 1, the architecture of PRmalloc consists of three principal
components, namely, the MemoryPlanner, the TensorPoolAl-
locator, and the malloc library.

MemoryPlanner is in charge of the memory management
policy. It first collects the tensor allocation information dur-
ing execution. Based on this information, MemoryPlanner
can heuristically search for the optimal memory allocation
scheme for the running deep learning application. By leverag-
ing the malloc library, TensorPoolAllocator uses a lock-free
queue to manage the memory blocks’ allocation and deallo-
cation according to the optimal memory allocation scheme.

Thanks to the predictability, we observe that the read/write
sequences of the tensors remain quite stable between suc-
cessive mini-batches, which means they incline to allocate/
deallocate the same set of tensors at roughly the same time,
offering a possibility of reducing memory usage through
reusing the allocated memory blocks between mini-batches.
As illustrated in Figure 1, to find the optimal memory allo-
cation scheme, the MemoryPlanner first leverages the allo-
cation statistic to record all tensors’ allocate and deallocate
operations in the first K (typically 10) mini-batches, captur-
ing the lifetime of the required memory blocks to formulate
the memory block recycle dependency. It then estimates
the amount of memory usage under different bin policies

 0

 1

 2

MinorPageFault MemoryUsage TrainingSpeed

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Original TF
TF with PRmalloc

Figure 3. Deep-CTR Performance.
(PRmalloc adopts a bin-based mechanism [4] which orga-
nizes memory blocks into several fixed-size bins). Based on
the estimations, it heuristically searches for the optimal bin
policy to minimize the memory usage and minor page fault.

TensorPoolAllocator considers the identified heuristic pol-
icy to manage a memory pool for the rest of mini-batches.
Ideally, the memory blocks it provides each time are exactly
match the ones requested by the deep learning application,
especially for large memory requests. Therefore, it avoids ex-
tra minor page faults from the OS memory allocation. Note
that, sometimes the actual memory requests can validate
the found policy, TensorPoolAllocator will roll back to the
original memory allocator instead.

2.2 Heuristic memory reuse within mini-batches
Apart from the across mini-batches reuse, to further cut
down the memory footprint, PRmalloc also reuses memory
blocks by utilizing the memory dependency information
within a mini-batch. Specifically, during allocation statis-
tics recording, PRmalloc first sorts all memory allocation
requests within a mini-batch from largest to smallest accord-
ing to the size of the request (e.g., A→ F in Figure 2). Then,
PRmalloc tries to match each request with the appropriate-
sized block (which is available for the requested time period)
by ascending order of the bin size. For instance, for the re-
quest C in Figure 2, PRmalloc tries to match it with 52KB
blocks first. However, due to there is no available block for re-
quested time period, PRmalloc matches it with a 68KB block
finally. As the example shown in Figure 2, PRmalloc reduces
the memory usage by up to 47% by reusing the allocated
memory blocks within a mini-batch for request C , D, and E.

3 Evaluation
We use a real production workload from Taobao Search of
Alibaba to evaluate PRmalloc. We implement our system
prototype on TensorFlow r1.8 and evaluate the DeepCTR
model [1] in a configuration of 200 workers and 40 parame-
ter servers running in a hybrid could environment. Figure 3
shows the normalized statistic/performance of minor page
fault, total memory usage, and training speed (i.e., step per
second). According to the profiling result, the memory us-
age and page fault drop significantly, thus the performance
boosts by 1.8× in the end-to-end training.



PRmalloc: Leveraging Predictability for Deep Learning Memory Allocation AI Systems ’19, Oct 27, 2019, Ontario, Canada

References
[1] 2019. DeepCTR. (2019). Retrieved Sept 2, 2019 from https://github.

com/shenweichen/DeepCTR
[2] 2019. Scalablememory allocation using jemalloc. (2019). Retrieved Sept

11, 2019 from https://www.facebook.com/notes/facebook-engineering/
scalable-memory-allocation-using-jemalloc/480222803919/

[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 265–283.

[4] Jason Evans. 2006. A scalable concurrent malloc (3) implementation
for FreeBSD. In Proceedings of the BSDCan conference.

[5] Hal A Kierstead. 1991. A polynomial time approximation algorithm
for dynamic storage allocation. Discrete Mathematics 88, 2-3 (1991),
231–237.

[6] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, et al. 2018. Gandiva: Introspective cluster
scheduling for deep learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 595–610.

https://github.com/shenweichen/DeepCTR
https://github.com/shenweichen/DeepCTR
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919/
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919/

	Abstract
	1 Introduction
	2 PRmalloc
	2.1 System architecture and workflow
	2.2 Heuristic memory reuse within mini-batches

	3 Evaluation
	References

