
OverSeer: Efficient DNN Execution on Heterogeneous
Devices

Rohan Mukherjee
1,2
, Zhi Chen

1
, Vin Sharma

1
, Animesh Jain

1

1
Amazon Web Services,

2
Rice University

{mukrohan,chzhi,vinarm,janimesh}@amazon.com

Abstract
Deep learning applications have become pervasive in our

daily lives, and are being executed on awide variety of hetero-

geneous devices. This paper presents OverSeer , a topology-
and hardware-agnostic end-to-end system, that uses a novel

partitioning algorithm to efficiently utilize different compu-

tational capabilities present in heterogeneous devices.

ACM Reference Format:
Rohan Mukherjee

1,2
, Zhi Chen

1
, Vin Sharma

1
, Animesh Jain

1
.

2019. OverSeer: Efficient DNN Execution on Heterogeneous De-

vices. In Proceedings of ACM Conference (Workshop on AI Systems
at SOSP’19). ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 Introduction
Deep learning has made significant breakthroughs in solv-

ing complex problems, that only humans were considered

good at [2, 3, 6, 9]. We are interacting with many user-facing

applications on a daily basis that use Deep Neural Networks

(DNN) underneath. Due to widespread DNN adoption, DNN

execution happens on a wide variety of heterogeneous hard-

ware devices [1] [8]. Applications requiringmassive compute

and memory are offloaded to datacenter servers. We are also

witnessing a trend of edge-device DNN execution, driven

primarily by latency and privacy concerns [5].

In such diverse heterogeneous environments, it becomes

imperative to design a technique that can efficiently utilize

the heterogeneous device capabilities. For example, we ob-

serve that we can lose 10% performance for ResNet-152 on an

HP desktop x86-platform, with CPU and an integrated graph-

ics card, in the absence of an intelligent partitioner. Most

of the relevant prior work deals with exploiting parallelism

of the application by distributing the computations [4]. Our

focus is to partition such that we can get the best runtime

from the entire graph when executed sequentially. There are

many challenges in designing such an intelligent partitioner

in the context of DNNs:

• Large search space. Partitioning computation introduces

inter-device data transfer, injecting dependency between

operations and exploding the search space exponentially to

the number of operations N . For a device withM compute

devices, the search space becomes intractable - MN
. For

example, for ResNet-152, with 160 operations and 2 devices,
the search space is in the order of 10

48
. The problem for

general graphs is known to be NP-complete [4].
• Varied DNN Topology. DNN graphs can be of varied

topology. Though an optimal setting can be inferred for

a few type of graphs by designing specific algorithms for

Figure 1. OverSeer: Automatically profiles, calibrates, parti-

tions and executes a DNN on a heterogeneous device.

them, having a general purpose algorithm is challeng-

ing. For example, AlexNet can be represented as a linear

Markov chain [10, 11], making it possible to apply a Viterbi
style inference algorithm [7]. But, the same is not applica-

ble to ResNet network.
• Diverse Hardware Devices. To support widely varying

execution environments, a suitable partitioning system

should be hardware agnostic, able to interact with the ex-

isting platform software, and to automatically characterize

the device to find a suitable partitioning.

To this end, we introduce OverSeer , illustrated in Figure 1,

that seamlessly integrates into platform software, automat-

ically profiles the DNN application on heterogeneous de-

vices, partitions, and executes the graphs on the computing

resources. At the core of OverSeer is NeuroPartitioner , an
algorithm that converts a DNN topology into a canonical

format, finds suitable annotation and eventually partitions

the graph. While partitioning, OverSeer employs Profiler to
form an operator runtime database, while Calibrator uses
a set of hardware-agnostic micro-benchmarks to automati-

cally measure device parameters. The hardware-agnosticism

is achieved by utilizing a deep learning compiler - TVM [1],

enabling OverSeer to support varied execution environments.

The contributions of this paper are

• Topology-Agnostic Partitioning.NeuroPartitioner , a novel
partitioning algorithm, that converts the DNNmodels into

a canonical format, drastically reducing the search space

and quickly estimating suitable partitions.

• Hardware-Agnostic Infrastructure. OverSeer utilizes

hardware-agnostic micro-benchmarks, and uses TVM[1],

to automatically measure hardware characteristics and

support a wide-variety of execution environments.

• Automatic End-to-end System. OverSeer automatically
profiles, partitions and executes the graphs to efficiently

utilize the heterogeneous devices.

We observe thatOverSeer is able to achieve up to 10% speedup

for ResNet-152models on an i7-8700 HPmachine with 6-Core

CPU and an integrated GPU.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Workshop on AI Systems at SOSP’19, October 2019, Huntsville, Ontario, Canada Rohan Mukherjee1,2, Zhi Chen1, Vin Sharma1, Animesh Jain1

2 Design And Implementation
High-Level Design. OverSeer has three main components

- Profiler , Calibrator , NeuroPartitioner as shown in Figure 1.

Profiler generates an operator runtime database for each

device. Calibrator uses a set of hardware-agnostic micro-

benchmarks to automaticallymeasure communication-related

device characteristics like inter-device bandwidth and device-

kernel invocation time. NeuroPartitioner , using the profil-

ing and hardware measurements, converts the graph into a

canonical format, and intelligently annotates it across the

devices, which are then partitioned and executed via TVM.

We now present the details of NeuroPartitioner algorithm.

Problem Definition. The partitioning problem can be for-

mulated in a form of an annotated graph G where G = (V ,
E, D, A, f , д) comprises of a set of vertices V representing

DNN operations, a set of directed edges E denoting depen-

dencies, a set of available devices D, a mapping annotation

functionA = V → D from vertices to devices, a cost function

f (v ;ϕ,A),v ∈ V to estimate the runtime of each op, and an

inter-device communication cost function д(e;ϕ,A), e ∈ E.
ϕ is the database consisting of profiled computational and

calibrated communication cost. Our objective is to minimize

the computational and communication cost formulated as

follows

∗

A = arдmin
A

∑
v ∈V

f (v ;ϕ,A)) +
∑
e ∈E

д(e;ϕ,A) (1)

NeuroPartitioner. The key challenge for the annotator is

intractable search space. Relevant prior works have used

iterative algorithms like genetic algorithm and reinforcement
learning, but these can get stuck in local minima/maxima,

possibly leading to highly sub-optimal results. Additionally,

these iterative algorithms typically require considerable ef-

forts to tune the accuracy.

We observe that typical DNNs graphs have some unique

attributes that can help us reduce the search space. First,

DNN graph G is typically a directed acyclic graph with a

topological ordering and converges to a single sink (concate-

nating all outputs). Second, DNN graphs are typically static

or can be easily reduced to static ones by breaking it down

into completely static subgraphs. With these observations,

an undirected loop can still exist if there is a node that has

multiple children. But, this loop can also be broken by elimi-

nating all-but-one child egdes. These characteristics lets us

represent G in a specific tree format and significantly re-

duce the search space complexity. The process can be broken

down into Canonicalizing and Device selection.

1. Canonicalization: First, we generate a spanning tree from

G by following the path of the largest computation cost.

This reduces G to a static converging polytree. This re-

duction allows us to design a heuristic that is polynomial

to the number of nodes.

2. Device Selection: Then, we perform a top-down forward

pass to find the best runtime for each node in the graph for

each device, followed by a backtracking bottom-up phase

selecting the device for each node that leads to the lowest

runtime. This whole process can be easily represented as

a dynamic programming problem whose cost value can

be efficiently computed as follows,

costv ∈V ,i ∈D = f (v ;ϕ, i,Av→i)+

min
j ∈D

{
∑

p∈P (v)

д(ep→v ;ϕ,Ap→j,v→i) + costp, j } (2)

Here P(v) indicate the set of parent nodes of v . This sig-
nificantly reduces the complexity to O(|D |2 × |V |).

OverSeer takes this annotated graph, partitions it and exe-

cutes the subgraphs to efficiently utilize the available com-

pute resources.

3 Preliminary Results
We evaluate OverSeer using a variety of computer vision

models on an i7-8700 HP machine, with 6-Core CPU and an

integrated GPU. The findings of the experiment are shown in

the Figure 2. We observe, that compared to a system that has

no partitioning (best of all-GPU or all-CPU),OverSeer is capa-
ble of better utilizing the heterogeneous device, with a max

of 10% for ResNet-152 network. This speedup includes the

communication cost (data transfer and kernel invocation).

alex
net

vg
g11

vg
g13

vg
g16

vg
g19

re
sn

et18

re
sn

et34

re
sn

et50

re
sn

et101

re
sn

et152

dense
net121

dense
net161

dense
net169

dense
net201

sq
ueeze

net1.0

sq
ueeze

net1.1

mobile
net_0.25

mobile
net_0.50

mobile
net_0.75

mobile
net_1.000.8 x

0.85 x
0.9 x

0.95 x
1 x

1.05 x
1.1 x

1.15 x
1.2 x

S
pe

ed
up

 a
ga

in
st

 n
o

pa
rt

iti
on

in
g

Figure 2. OverSeer achieves substantial speedup compared

to no partitioning (best of all-CPU/all-GPU), efficiently uti-

lizing heterogeneous compute capabilities.

4 Future Work
Though OverSeer observes a performance improvement on a

heterogeneous device, our NeuroPartitioner algorithm is still

a sub-optimal solution to the original NP-complete problem.

Essentially, this is a search-space exploration vs optimal guar-

antee trade-off. An all-GPU/CPU has low guarantee as the

search space is unexplored. A greedy allocation gives a higher
guarantee with a better explored search-space whereas ge-
netic algorithm explores all of the search space with a low

guarantee. OverSeer explores more search space than greedy
but less than genetic and comes with a better guarantee than

both of them. Our future work is intended in further investi-

gating algorithms that can explore more search space while

holding similar or better guarantees.

Additionally, we will further solidify OverSeer’s hardware-
and topology-agnosticism. We are currently working with

multiple server and edge heterogeneous devices, yielding

promising results for CV models. We plan to strengthen

NeuroPartitioner’s topology-robustness by including new

NLP networks in our evaluation set.

OverSeer : Efficient DNN Execution on Heterogeneous Devices Workshop on AI Systems at SOSP’19, October 2019, Huntsville, Ontario, Canada

References
[1] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., Cowan,

M., Wang, L., Hu, Y., Ceze, L., Guestrin, C., and Krishnamurthy, A.

TVM: An automated end-to-end optimizing compiler for deep learning.

In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18) (Carlsbad, CA, Oct. 2018), USENIX Association,

pp. 578–594.

[2] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for

image recognition. CoRR abs/1512.03385 (2015).
[3] He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In

2015 IEEE International Conference on Computer Vision (ICCV) (Dec
2015), pp. 1026–1034.

[4] Kwok, Y.-K., and Ahmad, I. Static scheduling algorithms for allocating

directed task graphs to multiprocessors. ACM Comput. Surv. 31, 4 (Dec.
1999), 406–471.

[5] Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Jiao,

L., Qendro, L., and Kawsar, F. Deepx: A software accelerator for

low-power deep learning inference on mobile devices. In 2016 15th

ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN) (April 2016), pp. 1–12.

[6] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Nature 521,
7553 (5 2015), 436–444.

[7] Rabiner, L. R., and Juang, B. H. An introduction to hidden markov

models. IEEE ASSp Magazine (1986).
[8] Rotem, N., Fix, J., Abdulrasool, S., Deng, S., Dzhabarov, R., Hege-

man, J., Levenstein, R., Maher, B., Satish, N., Olesen, J., Park, J.,

Rakhov, A., and Smelyanskiy, M. Glow: Graph lowering compiler

techniques for neural networks. CoRR abs/1805.00907 (2018).

[9] Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford,

A., and Chen, X. Improved techniques for training gans. CoRR
abs/1606.03498 (2016).

[10] Taskar, B., Guestrin, C., and Koller, D. Max-margin markov net-

works. In Proceedings of the 16th International Conference on Neural
Information Processing Systems (2003), NIPS’03, pp. 25–32.

[11] Yedidia, J. S., Freeman, W. T., and Weiss, Y. Generalized belief

propagation. In Proceedings of the 13th International Conference on
Neural Information Processing Systems (2000), NIPS’00, pp. 668–674.

	Abstract
	1 Introduction
	2 Design And Implementation
	3 Preliminary Results
	4 Future Work
	References

