
IntML: Natural Compression for Distributed Deep Learning

Samuel Horváth Chen-Yu Ho Ludovı́t Horváth
Atal Narayan Sahu Marco Canini Peter Richtárik

KAUST

1. Introduction
Distributed machine learning has become common practice,
given the increasing model complexity and the sheer size of
real-world datasets. While GPUs have massively increased
compute power, networks have not improved at the same
pace. As a result, in large deployments with several par-
allel workers, distributed ML training is increasingly net-
work bounded [9]. Parallelization techniques like mini-batch
Stochastic Gradient Descent (SGD) alternate computation
phases with model update exchanges among workers. In the
widely-used synchronous setting, at the end of every SGD
iteration, every node communicates hundreds of MBs of gra-
dient values. This means that network performance often has
a substantial impact on overall training time.

To prevent the network from becoming a bottleneck, sev-
eral prior works [10, 1, 13, 12, 6, 3] have proposed lossy
compression methods that reduce the communication data
volume. These methods include sparsification methods that
communicate only a fraction of the original gradients, and
quantization methods that use fewer bits to represent the gra-
dients. The main challenge underlying the design of com-
pression methods is that the more compression is applied,
the more information is lost, and the more will the com-
pressed gradients differ from the original gradients, increas-
ing its statistical variance. Higher variance implies slower
convergence [1, 8], i.e., more communication rounds. So,
compression offers a trade-off between the communication
cost per iteration and the number of communication rounds.

In this work, we introduce a new, remarkably simple
yet theoretically and practically effective compression tech-
nique, which we call natural compression (Cnat). Our tech-
nique is applied individually to all gradient values and works
by randomized rounding to the nearest (negative or posi-
tive) power of two. Cnat is “natural” since the nearest power
of two of a real value expressed as a float is computation-
ally inexpensive and can be obtained by ignoring the man-
tissa. Thus, our scheme communicates just the exponents
and signs of the original floats. Importantly, natural com-
pression enjoys a provably small variance. The interested
reader can find a complete theoretical analysis in our techni-
cal report [5].

1 2 2.5 4

3
4

1
4

Figure 1: An illustration of natural compression applied to
t = 2.5: Cnat(2.5) = 2 with probability 4−2.5

2 = 0.75, and
Cnat(2.5) = 4 with probability 2.5−2

2 = 0.25.

Below, we briefly formalize Cnat and describe IntML, our
prototype implementation of Cnat for TensorFlow. Through
experimental results, we show that Cnat significantly re-
duces the training time compared to no compression. Our
technical report includes more experiments as well as a com-
parison to other approaches.

2. Natural Compression
Cnat is a function mapping t ∈ R to a random variable
Cnat(t) ∈ R. We define Cnat(0) = 0. For t > 0, Cnat per-
forms a stochastic rounding of t to either 2a or 2a+1, where
a is such that 2a ≤ t < 2a+1. The rounding probabilities
are chosen so as to ensure that the expected value of Cnat(t)
is equal to t. For t < 0 the mapping is defined analogously.
See Fig 1 for a graphical illustration.

Natural compression of a real number in a binary float-
ing point format is computationally cheap. Regardless of the
randomization step, Cnat amounts to simply dispensing off
the mantissa in the binary representation. Thus, Cnat pre-
serves 9 bits out of 32 bits, a 3.56× improvement according
to the IEEE 754 standard.

3. IntML Prototype Implementation
We implement the natural compression operator in C++
within the Gloo communication library [2], as a drop-in
replacement for the ring all-reduce routine. We follow the
same communication strategy introduced in SwitchML [9],
which aggregates the gradients using In-Network Aggrega-
tion on programmable network switches. We prototype the
In-Network Aggregation as a server-based program (we re-
fer as aggregator) implemented atop DPDK [7], and leave
a complete P4 implementation as future work; however, we

0 40 80 120 160 200 240 280 320
Epoch

0

1

2

3

4

Tr
ai

ni
ng

 lo
ss

Cnat
No Compression

0 10 20 30 40 50 60 70 80 90 100 110
Time (min)

0

1

2

3

4

Tr
ai

ni
ng

 lo
ss

1.36x faster

Cnat
No Compression

0 10 20 30 40 50 60 70 80 90 100110
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y 1.36x faster

Cnat
No Compression

0 20 40 60 80 100 120 140 160 180 200
Epoch

0.5

1.0

1.5

Tr
ai

ni
ng

 lo
ss

Cnat
No Compression

0 5 10 15 20 25 30 35
Time (min)

0.5

1.0

1.5

Tr
ai

ni
ng

 lo
ss

2.94x faster

Cnat
No Compression

0 5 10 15 20 25 30 35
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

2.94x faster

Cnat
No Compression

Figure 2: Training loss and test accuracy of ResNet110 (above) and AlexNet (below) on CIFAR10. Speedup is with respect to
time to execute 320 and 200 epochs, respectively.

vgg11
vgg16

vgg19
alexnet

googlenet
inception3

inception4
resnet50

resnet101
0
1
2
3
4
5

sp
ee

du
p

Cnat Cnat deterministic
In-Network
Aggregation

4.2
3.7 3.6 3.4

1.9 1.8 1.6 1.7
1.9

4.7
4.2 4.1

3.5

1.9 1.9 1.6 1.7
2.0

2.5 2.3 2.3 2.1
1.6 1.5 1.3 1.5 1.5

Figure 3: Training throughput speedup.

4 8
Number of workers

100
200
300
400
500
600
700
800

AT
E/

s (
x1

06)
In-Network
Aggregation
No Compression
Cnat
Cnat deterministic
ATE/s at line rate
(ring all-reduce)
ATE/s at line rate (INA)
ATE/s at line rate (Cnat)

Figure 4: Violin plot of Aggregated Tensor Elements
per second (ATE/s). Dashed lines denote the maxi-
mum ATE/s under line rate.

note that Cnat operations (bit shifting, masking, and random
bits generation) are available on programmable switches.

We carefully optimize our implementation using modern
x86 vector instructions (AVX2). To access memory more
efficiently, we compress a 32-bit floating point number to an
8-bit representation, where 1 bit is for the sign of the number,
1 bit to indicate zero, and 6 bits are for the exponent. We clip
the exponents in the range of −50 ∼ 10. Note that, in our
experiments, the exponent values never exceed the range of
−50 ∼ 10 and overflow or underflow never happened.

Despite the optimization effort, we identify non-negligible
10 ∼ 15% overheads in doing random number generation
used in stochastic rounding, which was also reported in [6].

4. System Evaluation
We run the workers on 8 machines configured with 1
NVIDIA P100 GPU, dual CPU Intel Xeon E5-2630 v4 at
2.20 GHz, and 128 GB of RAM. We integrate the library
with Horovod and, in turn, with TensorFlow. Our experi-
ments execute the standard CNN benchmark [11].

We first elaborate the microbenchmark experiments of
aggregated tensor elements (ATE) per second. Fig 4 shows
the result for aggregating 200 tensors with the size of
100MB, where we vary the number of workers between 4

and 8. The performance difference observed for the case of
Cnat, along with the similar performance for 4 and 8 work-
ers for Cnat deterministic indicate that the overhead of doing
stochastic rounding at the aggregator is a bottleneck.

We then illustrate the convergence behavior by train-
ing ResNet110 and AlexNet on CIFAR10 dataset. Fig 2
shows the training loss and test accuracy over time. We note
that natural compression lowers training time by ∼26% for
ResNet110 (17% more than QSGD for the same setup, see
[1] (Table 1)) and 66% for AlexNet, compared to using no
compression. The accuracy matches the results in [4] with-
out loss of final accuracy with the same hyperparameters
setting, training loss is also not affected by compression.

Next, we report the speedup measured in average training
throughput while training benchmark CNN models on Im-
agenet dataset for one epoch. The throughput is calculated
as the total number of images processed divided by the time
elapsed. Fig 3 shows the speedup normalized by the training
throughput of the baseline, that is, TensorFlow + Horovod
using the NCCL communication library. We observe that
the communication-intensive models (VGG, AlexNet) bene-
fit more from quantization as compared to the computation-
intensive models (GoogleNet, Inception, ResNet). These ob-
servations are consistent with prior work [1].

References
[1] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic.

QSGD: Communication-Efficient SGD via Gradient Quanti-
zation and Encoding. In NIPS, 2017.

[2] Facebook. Gloo. https://github.com/facebookincubator/
gloo.

[3] D. Grishchenko, F. Iutzeler, J. Malick, and M.-R. Amini.
Asynchronous Distributed Learning with Sparse Communi-
cations and Identification. CoRR, abs/1812.03871, 2018.
http://arxiv.org/abs/1812.03871.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[5] S. Horváth, C.-Y. Ho, v. Horváth, A. N. Sahu, M. Canini,
and P. Richtárik. Natural Compression for Distributed Deep
Learning. CoRR, abs/1905.10988, 2019. http://arxiv.
org/abs/1905.10988.

[6] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio. Quantized Neural Networks: Training Neural
Networks with Low Precision Weights and Activations. The
Journal of Machine Learning Research, 18(1):6869–6898,
2017.

[7] Intel. DPDK. https://www.dpdk.org/.

[8] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik.
Distributed Learning with Compressed Gradient Differences.
CoRR, abs/1901.09269, 2019. http://arxiv.org/
abs/1901.09269.

[9] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim,
A. Krishnamurthy, M. Moshref, D. R. K. Ports, and P. Richtárik.
Scaling Distributed Machine Learning with In-Network Ag-
gregation. CoRR, abs/1903.06701, 2019. http://arxiv.
org/abs/1903.06701.

[10] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-Bit Stochas-
tic Gradient Descent and Application to Data-Parallel Dis-
tributed Training of Speech DNNs. In Interspeech, 2014.

[11] TensorFlow benchmarks. https://github.com/tensorflow/
benchmarks.

[12] J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient Sparsifica-
tion for Communication-Efficient Distributed Optimization.
In NIPS, 2018.

[13] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li.
TernGrad: Ternary Gradients to Reduce Communication in
Distributed Deep Learning. In NIPS, 2017.

https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
http://arxiv.org/abs/1812.03871
http://arxiv.org/abs/1905.10988
http://arxiv.org/abs/1905.10988
https://www.dpdk.org/
http://arxiv.org/abs/1901.09269
http://arxiv.org/abs/1901.09269
http://arxiv.org/abs/1903.06701
http://arxiv.org/abs/1903.06701
https://github.com/tensorflow/benchmarks
https://github.com/tensorflow/benchmarks

	Introduction
	Natural Compression
	IntML Prototype Implementation
	System Evaluation

