
Training Larger Models on TensorFlow without
Additional GPU

Jinliang Wei1, Aurick Qiao1,4, Anand Jayarajan3,2, Garth Gibson2,1,3

Vijay Vasudevan5, Eric Xing1,4

1Carnegie Mellon University, 2Vector Institute, 3University of Toronto, 4Petuum Inc., 5Google

ABSTRACT
Across different applications, we have seen examples that
models with larger capacity achieve better performance. How-
ever, the model capacity is ultimately restricted by the limited
and expensive GPU memory. In this paper, we present a num-
ber of techniques that leverage cheap host memory to reduce
GPU memory consumption during training in TensorFlow.
Our techniques require no modifications to TensorFlow appli-
cation programs and enable training models with 3.8× more
(up to 2.5 Billion parameters) parameters on a single GPU.

1 INTRODUCTION
Over recent years, deep learning has achieved wide success
in many application domains, such as image classification [4],
object detection [2], machine translation [9] and speech recog-
nition [5]. Over many different applications, it is observed
that within the same model class, models with larger capacity
(more parameters) achieve better performance. We present
some examples found in recent deep learning literature in
Table 1.

Due to the computational overhead of deep neural network
training, researchers and practitioners often resort to hard-
ware accelerators, such as GPUs for fast training. However,
the model size is restricted by the limited and highly expen-
sive GPU memory. GPUs that are most commonly used for
deep learning training today are limited to 12 or 16 GB of
memory. Fig. 1 compares DRAM price with the price of a
number of desktop and server GPUs that are popularly used
for neural network training, in terms of $ per MBytes of on-
board memory. We observe that GPU price is not affected by
the decreasing DRAM price and remains highly expensive.

Motivated by these challenges, in this paper, we present a
mechanism to reduce GPU memory consmpution to enable
training bigger models by leveraging the cheaper host mem-
ory. We implemented those techniques in TensorFlow, without
requiring additional input or modifications to the application
program 1.

1Currently our techniques don’t support computation graphs that use dynamic
control flow operators, though this extension should not require significant
innovation

GTX580 Titan Black

Titan X
1080 Ti

Titan XpP4000

Titan V

 K20c
Kepler K40 V100-PCIe

Year

$/
M

By
te

s

0.005

0.01

0.05

0.1

0.5

1

2000 2005 2010 2015

DRAM Desktop GPU Data Center GPU

Figure 1: Comparing DRAM and GPU price (as dollars per
MB of on-board memory).

We refer to our memory-optimized TensorFlow as Ten-
sorFlowMem. TensorFlowMem implements three main op-
timizations: 1) partitioned graph execution that executes teh
computation graph in small partitions; 2) memory swapping
that offloads tenosr values from GPU memory to host mem-
ory and prefetches them before they are needed; and 3) vari-
able and constant placement that places stateful Variable
and Constant operation on CPU memory and fetches them
to GPU only when they are needed. We show that Tensor-
FlowMem enables training a ResNet model of 1916 layers
and a Mixture of Experts (MoE) model that has 2.9 billion
parameters on a single GPU with 12 GB of memory. Tensor-
FlowMem allows enables training RNNs on sequences of 2×
longer sequences.

2 IMPLEMENTATION AND EVALUATION
2.1 Techniques and Implementation
Partitioned graph execution. TensorFlowMem implements
a graph partitioning optimization pass. The graph partitioning
pass performs a depth-first traversal of each device’s computa-
tion graph and assigns nodes to fixed-size partitions according
to the traversal order. Depth-first traversal makes best effort
to consume intermediate results as soon as they are produced,
instead of holding them in memory for longer durations.
Memory swapping. A graph partition may generate interme-
diate results that are consumed by partitions that are many
sequential steps away in the computation schedule. Tensor-
FlowMem temporarily offloads the intermediate result tensors



Model Class Application Metric Scale By Model Name Scale #Parameters Performance

VGG [7] CV top-1 error layers VGG-16 16 layers 138 million 25.6
VGG-19 19 layers 144 million 25.5

ResNet
[4]

CV top-1 error layers
ResNet-50 50 layers N/A 20.74

ResNet-101 101 layers N/A 19.87
ResNet-152 152 layers N/A 19.38

Mixture-of-Experts
[6]

NLP test perplexity experts
MoE-32 32 experts 100 million 40.4

MoE-4096 4096 experts 4.4 billion 30.9
MoE-65536 65536 experts 9.2 billion 28.9

ResNet-40
[10]

CV test error widenning
N/A 1× wide 0.6 million 6.85
N/A 4× wide 8.9 million 4.97
N/A 8× wide 35.7 million 4.17

Table 1: Scaling model capacity via different ways. Results are collected from existing literature.

to host memory and prefetches them by adding SwapOut and
SwapIn nodes. Sequential execution across partitions makes
it easy to determine when operations are executed and place
SwapOut nodes in proper partitions and prefetch CPU tensors
shortly before they are needed.
Operation placement. A computation graph may contain
Variable and Constant nodes that are stateful operations.These
nodes are typically packaged with computation operations
that use them as an integral building block by higher level
programming interfaces, such as Keras [3]. When the appli-
cation program places the computation operation on GPUs,
Variables and Constants are implicitly placed on GPUs as
well due to limited programming flexibility. Constant folding
folds a subgraph into a Constant operation. The generated
Constant operation are placed on the same computing de-
vice as the computation operations. TensorFlowMem places
Variable and Constant nodes on CPU and loads their value
to GPU when needed.

System MB #Layers #Param. TPut.
TensorFlow 16 504 172 Million 11.43

TensorFlowMem 16 1916 697 Million 1.76
TensorFlowMem 32 1001 385 Million 4.04

Table 2: Maximum ResNet model size that can be trained on a
single Titan X GPU and computation throughput (TPut.) with
different mini-batch size (MB).

2.2 Evaluation Results
In this section, we present a preliminary experimental evalua-
tion of TensorFlowMem. All the experiments are conducted
in a private cluster, where each machine has a 16-core Intel
Xeon E5-2698B v3 processor with hyper-threading, 64GB of
DRAM and a Titan X GPU with 12GB device memory.

Deeper ResNet. Similar to previous work [1, 8], we increase
the model capacity of ResNet by scaling its number of lay-
ers. Specifically, we follow SuperNeuron [8] and increase the
number of the third block. Our result is present in Table 2. Us-
ing the same mini-batch size of 16 images, TensorFlowMem
scales to 1916 layers while TenosrFlow scales to only 504
layers. Using a mini-batch size of 32, TensorFlowMem scales
to 1001 layers. Moreover, TensorFlowMem fails to scale to
deeper ResNet because of running of host memory.

System #Experts #Param. Throughput
TensorFlow 12 / MoE 0.66 B 7.8 pairs / sec

TensorFlowMem 48 / MoE 2.5 B 1.2 pairs / sec
Table 3: Maximum number of experts that can be trained on a
single TitanX GPU. We use a batch size of 8 and graph partition
size of 200 operations.

Mixture of Experts. We evaluate TensorFlowMem using
Transformer w/MoE. Table 3 shows the maximum number of
experts per MoE layer which can trained using TensorFlow,
and TensorFlowMem. TensorFlowMem is able to train 48
experts for MoE layer, which is 4× as many as vanilla Ten-
sorFlow2. We also find that the throughput decreases roughly
linearly with respect to the number of experts when scaling
up the MoE layers using TensorFlowMem.

Sequence Length 100 200 400 500 800
TensorFlow 1.15 2.3 4.64 OOM OOM

TensorFlowMem 1.56 3.03 6.03 - 12
Table 4: Training iteration time vs. input sequence length

Longer Recurrence Sequences For RNNs, the sequence
length is often limited by GPU memory size. TensorFlowMem
2We ran TensorFlow both with and without the Grappler memory swapping
pass, but obtained the same result both times.

2



enables training RNNs on longer sequences with a small run-
time overhead, which we demonstrate using Mozilla Deep-
Speech, a statically unrolled RNN. Our experiments use a
mini-batch size of 128 sentences and the partition size of Ten-
sorFlowMem is set to 5. Table 4 shows that TensorFlowMem
can train DeepSpeech on sequences of length 800 while Ten-
sorFlow fails beyond sequence length of 400. Similar to
ResNet, TensorFlowMem fails to scale to longer sequences
due to the limited host memory. On the same sequence length,
TensorFlowMem shows a runtime overhead of roughly 35%.

REFERENCES
[1] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with

sublinear memory cost. ArXiv, abs/1604.06174, 2016.
[2] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object detection via region-

based fully convolutional networks. CoRR, abs/1605.06409, 2016.
[3] Francois Chollet. Keras. https://keras.io/, 2015.
[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. CoRR, abs/1512.03385, 2015.
[5] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury.
Deep neural networks for acoustic modeling in speech recognition.
Signal Processing Magazine, 2012.

[6] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. 2017.

[7] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning
Representations, 2015.

[8] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. Leon Song, Z. Xu, and
T. Kraska. Superneurons: dynamic gpu memory management for train-
ing deep neural networks. ACM SIGPLAN Notices, 53:41–53, 02 2018.

[9] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. John-
son, X. Liu, Łukasz Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google’s
neural machine translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144, 2016.

[10] S. Zagoruyko and N. Komodakis. Wide residual networks. In E. R. H.
Richard C. Wilson and W. A. P. Smith, editors, Proceedings of the
British Machine Vision Conference (BMVC), pages 87.1–87.12. BMVA
Press, September 2016.

3

https://keras.io/

	Abstract
	1 Introduction
	2 Implementation and Evaluation
	2.1 Techniques and Implementation
	2.2 Evaluation Results

	References

