
Sparse Convolutions for Faster Object Recognition
Wei Hao, Shivaram Venkataraman
University of Wisconsin, Madison

1 Introduction
With the rapid improvement in accuracy of machine learn-
ing models, models developed for image classification [3],
object recognition [8] are being deployed in a number of
new application scenarios. One particular scenario that is
becoming increasingly important is the use case of object
detection from video sources and a number of recent projects
have proposed new ML models [2, 8, 9] and end-to-end sys-
tems for applying ML models to large video datasets [5, 6].
One of the main characteristics of input data in video pro-
cessing is that a large part of the frame typically contains
redundant information (e.g., the background information)
and thus video processing frameworks typically can narrow
down the area of interest by subtracting the background
from each frame [1]. As our study shows (Section 2.2), back-
ground subtraction can lead to input images that are up to
97.4% empty on video datasets.

However, current computation libraries for machine learn-
ing inference don’t differentiate between dense and sparse
data (Section 2.3). As a result, even though the input images
have a large number of zero entries, unnecessary cycles are
spent on computing functions on zero values in the sparse
data. These overheads lead to increased latency and are espe-
cially significant when ML models are used on devices with
limited computing power, e.g. edge devices with only CPUs.

To address this challenge, we are working on a new frame-
work for acceleratingMLmodels applied to sparse input data.
As a first in this framework we study convolution operations
applied to sparse images. Convolution operations are among
the most widely used in object recognition models and ac-
celeration convolutions can enable significant end-to-end
speed ups. We improve the convolution implementation in
the Intel MKL-DNN [7] library and specifically exploit the
structure of the direct convolution algorithm used as a de-
fault in MKL-DNN. We design a new technique to check the
sparsity of rows and skip sparse rows, while efficiently as-
signing work among multiple threads. Our results show that
the convolution 2D operation speeds up by upto 50% during
inference on object recognition tasks run on CPUs. We fi-
nally describe work in progress in extending our approach
to other workloads and operators.

2 Sparse convolutions
We next describe our approach to improving convolutions
for sparse input data. We start by describing commonly used
approach for implementing convolution in CPU libraries.

2.1 Direct Convolution
Three convolution algorithms are used in MKL-DNN based
on the shape of input data: Direct Algorithm, Winograd
Algorithm and Implicit GEMM Algorithm. The Direct Algo-
rithm is used for most input shapes [7] and it computes the
convolution by performing operations of the form:

dst(n,oc,oh,ow) =

IC−1∑
ic=0

KH−1∑
kh=0

KW −1∑
kw=0

src(n, ic,oh · SH + kh − ph0,

ow · SW + kw − pw0) ·weiдhts(oc, ic,kh,kw)

where src, weights and dst correspond to the input image,
convolution filter weights and output feature map with di-
mensions of N × IC × IH × IW ,OC × IC × KH × KW and
N ×OC ×OH ×OW . And N , IC, IH , IW denote batch size,
number of input channels, input height, input width. Cor-
respondingly, OC,OH ,OW represent the number of output
channels, output height, output width and KH ,KW ,ph,pw
denote the filter height, filter width, padding height and
padding width respectively.
The direct convolution is implemented in MKL-DNN to

take advantage of multi-core machines and the computa-
tion is spread across multiple threads. The assignment of
work to threads happens as follows: The output tensor of
the convolution (dst ) is split by rows and each thread is then
assigned a range of rows based on the number of threads
available. Each thread is then responsible for computing the
convolution for the corresponding rows of the output. For
a dense image, the amount of computation in each thread
doesn’t differ. On the other hand, for a sparse image, a large
fraction of computations can be omitted because of the na-
ture of convolution: No matter what values are present in a
convolution filterweiдhts , the output will be be zero if the
corresponding inputs are all zeros. However, given the par-
allelization strategy described above, the overall time taken
for the convolution is bounded by the thread that consumes
the most time.

2.2 SparsityCheck
We propose SparsityCheck, a sparse convolution method
targeted towards multi-core CPU architectures. Given a con-
volution operation, SparsityCheck first inspects the values
in every batch of input data assigned to each thread. If the
values in the input are within the range of error tolerance (δ ),
then computations corresponding to those inputs are elided.



(a) (b)

Figure 1. Example Frame after Background Subtraction

Dataset Jackson
Resolution 1920 × 1080 pixels
Frames 20,000
Avg. Sparsity Before Conv2D 97.4%
Avg. Sparsity After Conv2D 96.3%

Table 1. Jackson Dataset Characteristics

Additionally to ensure that the overall operation is sped up,
SparsityCheck also balances the remaining work uniformly
across the threads. However checking the inputs for sparsity
might itself lead to some overheads. We find that the data
caching and access patterns used by the blocked memory
layout [7] in MKL-DNN lead to minimal overheads as seen
in our early results. We are also exploring other strategies
like randomly sampling rows or randomly sampling entries
within each row to further lower overheads.

2.3 Evaluation
The dataset we use is the Jackson dataset [4], an HD video
captured from a traffic camera deployment in Jackson Hole,
Wyoming. We choose a 12 minutes long time interval which
contains 20,000 RGB Frames. Each frame has a resolution of
1920 × 1080 pixels. For pre-processing, we apply background
subtraction [1] using the CV2module fromOpenCV to create
sparse frames.

Dataset SparsityWe calculate the average sparsity of the
video as the ratio of the number of zeros in every frame by
the total size of all frames.

AveraдeSparsity =

∑num(f rame)
i=1 numzero(f rame)

size(f rame) · num(f rame)

As shown in Table 1, we see that the average sparsity is
around 97%. Further we see that applying a 7x7 convolution
retains the sparsity.

Performance gains.We next present performance results
from running the 7x7 convolution using the conv2D oper-
ation in Pytorch on the Jackson dataset. We used the same
weights as in the first Conv2d layer in ResNet [3] during
inference. We also vary the batch size used to investigate if
batching a number of sparse images offers any performance

Batch Size Dense (ms) Sparse (ms)
1 73.8 85.5
4 293.7 285.03
8 597.2 599.9
16 1260.1 1011.1

Table 2. Average Time taken by MKL-DNN for Sparse vs
Dense data

Batch Size Average Improvement
1 36.8%
4 45.7%
8 51%
16 56.3%

Table 3. Average improvement from Sparse Convolution

improvement. First we compare the performance of MKL-
DNNwhen presented with dense vs. sparse images in Table 2.
We see that MKL-DNN has no speedup for small batch sizes
and limited speedup with a batch size of 16.
We integrate SparsityCheck described before with MKL-

DNN and Pytorch. Our current configuration performs spar-
sity checks on entire rows and only skips computation if all
pixels in a row are zero (δ = 0). This approach ensures there
are no errors in the Conv2d output. Our results showing the
speedup with respect to dense convolution in MKL-DNN
is shown in Table 3. We find that SparsityCheck provides
around 50% improvement compared to the baseline. Our cur-
rent profiling suggests that our improvements are lower than
the average sparsity in each frame due to the fact that our
check is conservative and only elides computation when the
entire row is empty. We are currently developing techniques
to avoid computations for partially sparse rows.

3 Future Work & Conclusion
Sparse input data presents new opportunities for accelerating
machine learning workloads. We presented a case study of
video datasets with background subtraction and showed how
sparse convolutions can improve performance.
We are planning to extend our work in a number of di-

rections to build an efficient end-to-end machine learning
engine for sparse data. While we considered convolutions on
multi-core CPUs in this work we plan to study techniques
for GPUs and other accelerators. We also plan to study how
other workloads like natural language processing could ben-
efit from sparse implementation of machine learning oper-
ators. Finally we are also looking at how low power edge
devices that are often deployed close to a camera source can
benefit from better handling of sparse data.

2



References
[1] S. Brutzer, B. Hoferlin, and G. Heidemann. Evaluation of background

subtraction techniques for video surveillance. In CVPR, 2011.
[2] P. Burlina. Mrcnn: A stateful fast r-cnn. 2016 23rd International Confer-

ence on Pattern Recognition (ICPR), 2016.
[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image

Recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 16), 2016.

[4] S. J. Hole. Jackson hole wyoming usa town square live cam - seejh.com,
Jan 2018.

[5] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu. Focus: Querying large video
datasets with low latency and low cost. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), 2018.

[6] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia. NoScope:
Optimizing Neural Network Queries Over Video at Scale. Proceedings
of the VLDB Endowment, 10(11):1586–1597, 2017.

[7] Deep Neural Network Library (DNNL) . https://intel.github.io/mkl-dnn/.
Last accessed 14 September 2019.

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[9] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(6):1137–1149, Jan 2017.

3

https://intel.github.io/mkl-dnn/

	1 Introduction
	2 Sparse convolutions
	2.1 Direct Convolution
	2.2 SparsityCheck
	2.3 Evaluation

	3 Future Work & Conclusion
	References

