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Abstract
Distributed Machine Learning training is emerging in to-
day’s datacenters. The training time of a distributed ML job
is closely tied to the parallelism technique used to distrib-
ute the job across worker nodes, as well as the available
compute, storage, and network capabilities in the datacenter.
Current parallelism techniques often implicitly make two
simplifying assumptions: (i) datacenter nodes are homoge-
neous and (ii) there is little to no congestion in the network.
However, at scale, these assumptions do not always hold and
stragglers are a pervasive challenge in today’s datacenter
job scheduling. A straw-man approach to reduce the impact
of stragglers is to replicate (sometimes speculatively) each
sub-task. However, this approach commonly incorporates
a timeout component to recover from straggler sub-tasks.
In this work, we address the problem of how to curb the
impact of stragglers in distributed ML jobs without having
to speculate. Our approach leverages the unique nature of
image recognition workloads and the theory of graph entropy.
Our proposal, FlexEnt, identifies the entropy present in a
training batch using a set of “feature filters” and replicates
only a fraction of the training data on a predetermined set
of “shadow workers”. In doing so, FlexEnt will decode the
training parameters as soon as a sub-set of sub-tasks are
completed. This approach will enable datacenter operators
to adjust a knob between the number of additional shadow
workers and the degree of stragglers protection.

1 Introduction
Today’s distributed Machine Learning (ML) workloads rely
on either synchronous [1–3] or asynchronous updates be-
tween nodes [4–7]. A synchronous approach loads a fraction
of the training data on to each node, then waits for the train-
ing algorithm to run, aggregating the results at each iteration
using a parameter server or ring-reduce arrangement [3, 8–
12]. In an asynchronous approach, the goal is to remove the
dependency on scheduling and the behaviour of other ma-
chines to remove the effect of slow machines or congestion
in the network [6, 12–15].

Synchronous approaches are broadly successful for small
numbers of workers, as the synchronisation constraints are
not overly limiting at small scale [7, 16]. However, the proba-
bility of a delay caused by a congested link or a slow worker
grows exponentially as the system is scaled up [17]. This
problem is exacerbated when a training task is run across
heterogeneous nodes and workloads, since heterogeneity is

a major source of stragglers [16, 18–20]. New approaches,
such as Horovod [3], reduce the dependency of training on
the network bandwidth available for sharing gradient up-
dates between workers using the all-reduce algorithm’s ring
structure [3]. However, by its nature this structure is vulner-
able to stragglers, as a single slow machine or a congested
link can limit the completion of the overall calculation [21].

Large-scale distributed ML workloads are expected to run
in the heterogeneous cloud environments, hence many jobs
of various sizes share the same infrastructure [13, 16, 20, 22].
Therefore, stragglers will be prevalent due to outdated hard-
ware, failures, or congested links. Many systems use a hard
deadline or a speculative approach to decide when to aban-
don the slow workers [18, 23]. To avoid using deadlines, one
approach is to replicate the entire training task [23]. While
this approach ensures there is always a redundant copy avail-
able of each worker, it also consumes a significant quantity
of additional resources per level of protection obtained. In
this work, we present FlexEnt, a coding-based scheduling
system for training jobs. FlexEnt curbs the effect of strag-
glers in large-scale training jobs by selectively replicating
high-entropy data as described in the next section.

2 FlexEnt System Description
The key to FlexEnt is to create sub-sampled sets of ‘shadow’
training data, formed from coding amalgams of the original
training data. These high-entropy subsets can be trained
on ‘shadow’ workers, and made available to the ‘primary’
workers performing the main training for a just-in-time re-
placement of gradient updates from stragglers. The number
of shadow workers creating coded jobs is dependent on the
desired level of straggler protection. The effectiveness of
coding techniques for ML inference has been demonstrated
in prior work [24]. However, a unique challenge of using any
coding theory for training workloads is that the fundamental
assumption of linear processing does not apply to ML train-
ing. We solve this challenge by ‘porting’ the required coding
to the gradient aggregation step, which is a linear operation
carried out on the results of a non-linear computation, and
hence can be coded.
Our approach is designed to be applicable to commonly

used stochastic ML techniques such as stochastic gradient
descent [2, 8, 25]. FlexEnt’s goal is to build a reasonably
accurate estimate of the output gradient vector from training
on a quasi-redundant, but entropy rich, copy, based on the
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(a) Entropy graph for a dataset
using the “eyes” feature.
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(b) Alternative entropy graph
for the same dataset using the
“mouths” feature.

Figure 1. Intuitive examples of entropy graphs where emojis
with different features are connected to each other. We then
colour these graphs based on adjacency. To capture multi-
ple dimensions, we repeat this process over many features,
which produce different graphs such as (a) and (b). From
information theory, illustrated in Fig. 2, we can use the joint
entropy to identify the ‘entropy-rich’ samples.

entropy graph colouring of the input data. To do so, FlexEnt
goes through the following steps:
Setup Phase
– Given n worker nodes, select s nodes as shadow workers
and n − s nodes as primary workers;

– Assign a fraction of data (batch) to each primary worker.
Sampling Phase
– Calculate the joint entropy of each entry in the dataset
under a set of features as explained in section 3;

– Select the entries that maximise the joint entropy and
assign these to the shadow workers.

Training Phase
– Repeatedly run training iterations on both primary and
shadow workers;

– Use shadow workers’ approximate gradients to replace a
straggler’s gradients during update steps.

3 Entropy Graph Colouring
In information theory, an entropy function is built from a
model function’s characteristic graph. The colouring of this
graph represents the entropy available in the data [26, 27].
Figure 1 illustrates an example of two entropy graphs and
their associated colouring. We take a dataset of five images to
be processed in a distributed fashion. Our goal is to produce
an entropy-rich sub-set of the images to be replicated across
shadow workers. We demonstrate this process using two
features appropriate to capture the highest entropies across
the dataset. Images that contain a feature, shown by boxes in
Figure 1, essentially have the same output in this dimension,
and are therefore not connected in the graph. This allows us
to draw and colour the entropy graph, as shown. We then
sample the entropy graphs to obtain the maximum diversity
across all colours, represented by the joint entropy shown in
Figure 2, allowing a sampling rate that is below the straight
sum of each dimension’s rate.

Rate of X1

Rate of X2

Entropy of X2

Entropy of X2 
given X1

Entropy 
of X1

Entropy of 
X1 given X2

Joint Entropy

Figure 2. Concave behaviour of the joint entropy output
from two features (for example from Figure 1). Rates are the
sample rates of data from each entropy feature [27].

János Körner’s information theoretic approach shows that
the total (joint) entropy for an image set can be estimated by
the entropy of colouring graphs of k features [27]. We use
this information in conjunction with the approach in [28]
to select entropy-rich samples for our shadow nodes. The
goal is to select the largest number of colour groups possible,
across the features used, to achieve the largest entropy for a
given batch size.

Our approach ties into the graph entropy of Körner’s [26,
29], further developed to cover the idea of rate-distortion [27].
This theory supports the principle that in terms of overall
resource utilisation, it is advantageous to proceed with a
fraction of each dimension of data rather than running the
same amount of time with the full missing space set [27].
This is because of the concave shape of the rate curve drawn
from the entropy graph as shown in Figure 2, where X is a
random variable of a feature over the data.
Our preliminary results with the MNIST dataset confirm

this theory.We find that when a primary worker is straggling
behind, replacing its missing gradients with a shadowworker
that trains on a randomly sub-sampled data achieves better
accuracy compared to abandoning the primary worker. In
future work, we plan to use the features during training
iterations to select entropy rich data. Intuitively, gradient
estimates produced from high-entropy samples should be
significantly improved compared to random sampling, as
they contain more information about the training space.

4 Conclusion
FlexEnt is a system designed to mitigate the impact of strag-
glers on distributed machine learning jobs in datacenters.
We leverage concepts from coding and information theory
to provide a good estimate at a predictable soft-threshold,
rather than enforcing a hard deadline or using speculating
approaches to recover from stragglers. Our approach is de-
signed to provide an adjustable knob to specify the level of
straggler protection required, so that the system provides
the maximum speedup within constraints.
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