
FlexEnt: Entropy Coding to Curb Stragglers in
Large-Scale Distributed Machine Learning

James Salamy Ayush Sharma Manya Ghobadi Muriel Médard
Massachusetts Institute of Technology

Abstract
Distributed Machine Learning training is emerging in to-
day’s datacenters. The training time of a distributed ML job
is closely tied to the parallelism technique used to distrib-
ute the job across worker nodes, as well as the available
compute, storage, and network capabilities in the datacenter.
Current parallelism techniques often implicitly make two
simplifying assumptions: (i) datacenter nodes are homoge-
neous and (ii) there is little to no congestion in the network.
However, at scale, these assumptions do not always hold and
stragglers are a pervasive challenge in today’s datacenter
job scheduling. A straw-man approach to reduce the impact
of stragglers is to replicate (sometimes speculatively) each
sub-task. However, this approach commonly incorporates
a timeout component to recover from straggler sub-tasks.
In this work, we address the problem of how to curb the
impact of stragglers in distributed ML jobs without having
to speculate. Our approach leverages the unique nature of
image recognition workloads and the theory of graph entropy.
Our proposal, FlexEnt, identifies the entropy present in a
training batch using a set of “feature filters” and replicates
only a fraction of the training data on a predetermined set
of “shadow workers”. In doing so, FlexEnt will decode the
training parameters as soon as a sub-set of sub-tasks are
completed. This approach will enable datacenter operators
to adjust a knob between the number of additional shadow
workers and the degree of stragglers protection.

1 Introduction
Today’s distributed Machine Learning (ML) workloads rely
on either synchronous [1–3] or asynchronous updates be-
tween nodes [4–7]. A synchronous approach loads a fraction
of the training data on to each node, then waits for the train-
ing algorithm to run, aggregating the results at each iteration
using a parameter server or ring-reduce arrangement [3, 8–
12]. In an asynchronous approach, the goal is to remove the
dependency on scheduling and the behaviour of other ma-
chines to remove the effect of slow machines or congestion
in the network [6, 12–15].

Synchronous approaches are broadly successful for small
numbers of workers, as the synchronisation constraints are
not overly limiting at small scale [7, 16]. However, the proba-
bility of a delay caused by a congested link or a slow worker
grows exponentially as the system is scaled up [17]. This
problem is exacerbated when a training task is run across
heterogeneous nodes and workloads, since heterogeneity is

a major source of stragglers [16, 18–20]. New approaches,
such as Horovod [3], reduce the dependency of training on
the network bandwidth available for sharing gradient up-
dates between workers using the all-reduce algorithm’s ring
structure [3]. However, by its nature this structure is vulner-
able to stragglers, as a single slow machine or a congested
link can limit the completion of the overall calculation [21].

Large-scale distributed ML workloads are expected to run
in the heterogeneous cloud environments, hence many jobs
of various sizes share the same infrastructure [13, 16, 20, 22].
Therefore, stragglers will be prevalent due to outdated hard-
ware, failures, or congested links. Many systems use a hard
deadline or a speculative approach to decide when to aban-
don the slow workers [18, 23]. To avoid using deadlines, one
approach is to replicate the entire training task [23]. While
this approach ensures there is always a redundant copy avail-
able of each worker, it also consumes a significant quantity
of additional resources per level of protection obtained. In
this work, we present FlexEnt, a coding-based scheduling
system for training jobs. FlexEnt curbs the effect of strag-
glers in large-scale training jobs by selectively replicating
high-entropy data as described in the next section.

2 FlexEnt System Description
The key to FlexEnt is to create sub-sampled sets of ‘shadow’
training data, formed from coding amalgams of the original
training data. These high-entropy subsets can be trained
on ‘shadow’ workers, and made available to the ‘primary’
workers performing the main training for a just-in-time re-
placement of gradient updates from stragglers. The number
of shadow workers creating coded jobs is dependent on the
desired level of straggler protection. The effectiveness of
coding techniques for ML inference has been demonstrated
in prior work [24]. However, a unique challenge of using any
coding theory for training workloads is that the fundamental
assumption of linear processing does not apply to ML train-
ing. We solve this challenge by ‘porting’ the required coding
to the gradient aggregation step, which is a linear operation
carried out on the results of a non-linear computation, and
hence can be coded.
Our approach is designed to be applicable to commonly

used stochastic ML techniques such as stochastic gradient
descent [2, 8, 25]. FlexEnt’s goal is to build a reasonably
accurate estimate of the output gradient vector from training
on a quasi-redundant, but entropy rich, copy, based on the

1



RED

RED

BLUE

GREEN
GREEN

(a) Entropy graph for a dataset
using the “eyes” feature.

RED

RED

RED

BLUE

BLUE

(b) Alternative entropy graph
for the same dataset using the
“mouths” feature.

Figure 1. Intuitive examples of entropy graphs where emojis
with different features are connected to each other. We then
colour these graphs based on adjacency. To capture multi-
ple dimensions, we repeat this process over many features,
which produce different graphs such as (a) and (b). From
information theory, illustrated in Fig. 2, we can use the joint
entropy to identify the ‘entropy-rich’ samples.

entropy graph colouring of the input data. To do so, FlexEnt
goes through the following steps:
Setup Phase
– Given n worker nodes, select s nodes as shadow workers
and n − s nodes as primary workers;

– Assign a fraction of data (batch) to each primary worker.
Sampling Phase
– Calculate the joint entropy of each entry in the dataset
under a set of features as explained in section 3;

– Select the entries that maximise the joint entropy and
assign these to the shadow workers.

Training Phase
– Repeatedly run training iterations on both primary and
shadow workers;

– Use shadow workers’ approximate gradients to replace a
straggler’s gradients during update steps.

3 Entropy Graph Colouring
In information theory, an entropy function is built from a
model function’s characteristic graph. The colouring of this
graph represents the entropy available in the data [26, 27].
Figure 1 illustrates an example of two entropy graphs and
their associated colouring. We take a dataset of five images to
be processed in a distributed fashion. Our goal is to produce
an entropy-rich sub-set of the images to be replicated across
shadow workers. We demonstrate this process using two
features appropriate to capture the highest entropies across
the dataset. Images that contain a feature, shown by boxes in
Figure 1, essentially have the same output in this dimension,
and are therefore not connected in the graph. This allows us
to draw and colour the entropy graph, as shown. We then
sample the entropy graphs to obtain the maximum diversity
across all colours, represented by the joint entropy shown in
Figure 2, allowing a sampling rate that is below the straight
sum of each dimension’s rate.

Rate of X1

Rate of X2

Entropy of X2

Entropy of X2 
given X1

Entropy 
of X1

Entropy of 
X1 given X2

Joint Entropy

Figure 2. Concave behaviour of the joint entropy output
from two features (for example from Figure 1). Rates are the
sample rates of data from each entropy feature [27].

János Körner’s information theoretic approach shows that
the total (joint) entropy for an image set can be estimated by
the entropy of colouring graphs of k features [27]. We use
this information in conjunction with the approach in [28]
to select entropy-rich samples for our shadow nodes. The
goal is to select the largest number of colour groups possible,
across the features used, to achieve the largest entropy for a
given batch size.

Our approach ties into the graph entropy of Körner’s [26,
29], further developed to cover the idea of rate-distortion [27].
This theory supports the principle that in terms of overall
resource utilisation, it is advantageous to proceed with a
fraction of each dimension of data rather than running the
same amount of time with the full missing space set [27].
This is because of the concave shape of the rate curve drawn
from the entropy graph as shown in Figure 2, where X is a
random variable of a feature over the data.
Our preliminary results with the MNIST dataset confirm

this theory.We find that when a primary worker is straggling
behind, replacing its missing gradients with a shadowworker
that trains on a randomly sub-sampled data achieves better
accuracy compared to abandoning the primary worker. In
future work, we plan to use the features during training
iterations to select entropy rich data. Intuitively, gradient
estimates produced from high-entropy samples should be
significantly improved compared to random sampling, as
they contain more information about the training space.

4 Conclusion
FlexEnt is a system designed to mitigate the impact of strag-
glers on distributed machine learning jobs in datacenters.
We leverage concepts from coding and information theory
to provide a good estimate at a predictable soft-threshold,
rather than enforcing a hard deadline or using speculating
approaches to recover from stragglers. Our approach is de-
signed to provide an adjustable knob to specify the level of
straggler protection required, so that the system provides
the maximum speedup within constraints.

Acknowledgments
Wewould like to thankKenDuffy and Seva Shneer for helpful
discussions and guidance throughout this research.

2



References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Lev-
enberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system
for large-scale machine learning. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16),
pages 265–283, Savannah, GA, November 2016. USENIX Asso-
ciation.

[2] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and
distributed deep learning: An in-depth concurrency analysis.
ACM Computing Surveys, 2019.

[3] Alexander Sergeev and Mike Del Balso. Horovod: fast and
easy distributed deep learning in tensorflow. arXiv preprint,
2018.

[4] Benjamin Recht, Christopher Re, Stephen Wright, and Feng
Niu. Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 24, pages 693–701. Curran
Associates, Inc., 2011.

[5] Jin Kyu Kim, Abutalib Aghayev, Garth A. Gibson, and Eric P.
Xing. Strads-ap: Simplifying distributed machine learning
programming without introducing a new programming model.
In 2019 USENIX Annual Technical Conference (USENIX ATC 19),
pages 207–222, Renton, WA, July 2019. USENIX Association.

[6] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and
Koray Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. In Maria Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of The 33rd International Con-
ference on Machine Learning, volume 48 of Proceedings of Ma-
chine Learning Research, pages 1928–1937, New York, New
York, USA, 20–22 Jun 2016. PMLR.

[7] Julaiti Alafate and Yoav Freund. Tell me something new: A
new framework for asynchronous parallel learning. Preprint,
2018.

[8] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, andMi-
lan Vojnovic. Qsgd: Communication-efficient sgd via gradient
quantization and encoding. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30,
pages 1709–1720. Curran Associates, Inc., 2017.

[9] Jie Shen and Ping Li. Partial hard thresholding: Towards a
principled analysis of support recovery. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 3124–3134. Curran Associates, Inc.,
2017.

[10] Michael Kamp, Mario Boley, Olana Missura, and Thomas
Gärtner. Effective parallelisation for machine learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 6477–6488. Curran
Associates, Inc., 2017.

[11] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu,
Sanjiv Kumar, and BrendanMcMahan. cpsgd: Communication-
efficient and differentially-private distributed sgd. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 7564–7575. Curran Associates, Inc., 2018.

[12] Soojeong Kim, Eunji Jeong, Joo Seong Jeong, Gyeong-In Yu,
Hojin Park, and Byung-Gon Chun. Auto-parallelizing deep
learning for multi-machine, multi-gpu environments. InWork-
shop on AI Systems at Symposium on Operating Systems Princi-
ples (SOSP), 2017.

[13] Hang Shi, Yue Zhao, Bofeng Zhang, Kenji Yoshigoe, and
Athanasios V. Vasilakos. A free stale synchronous parallel
strategy for distributed machine learning. In Proceedings of the
2019 International Conference on Big Data Engineering (BDE
2019) - BDE 2019. ACM Press, 2019.

[14] Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gre-
gory R. Ganger, Phillip B. Gibbons, Garth A. Gibson, and Eric P.
Xing. Addressing the straggler problem for iterative conver-
gent parallel ml. In Proceedings of the Seventh ACM Symposium
on Cloud Computing, SoCC ’16, pages 98–111, New York, NY,
USA, 2016. ACM.

[15] Constantinos Daskalakis, Nishanth Dikkala, and Siddhartha
Jayanti. Hogwild!-gibbs can be panaccurate. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 32–41. Curran Associates, Inc., 2018.

[16] Celestine Dünner, Thomas Parnell, Dimitrios Sarigiannis,
Nikolas Ioannou, Andreea Anghel, Gummadi Ravi, Madhusu-
danan Kandasamy, and Haralampos Pozidis. Snap ml: A hi-
erarchical framework for machine learning. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 252–262. Curran Associates, Inc., 2018.

[17] Farshid Farhat, Diman Zad Tootaghaj, Yuxiong He, Anand
Sivasubramaniam, Mahmut Kandemir, and Chita R. Das. Sto-
chastic modeling and optimization of stragglers. IEEE Trans-
actions on Cloud Computing, 6(4):1164–1177, oct 2018.

[18] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy
Katz, and Ion Stoica. Improving mapreduce performance in
heterogeneous environments. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’08, pages 29–42, Berkeley, CA, USA, 2008. USENIX As-
sociation.

[19] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and Lintao
Zhang. Kv-direct: High-performance in-memory key-value
store with programmable nic. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, pages 137–152,
New York, NY, USA, 2017. ACM.

[20] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich,
Marcus Fontoura, and Ricardo Bianchini. Resource central: Un-
derstanding and predicting workloads for improved resource
management in large cloud platforms. In Proceedings of the
26th Symposium on Operating Systems Principles, SOSP ’17,
pages 153–167, New York, NY, USA, 2017. ACM.

3



[21] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce
algorithms for clusters of workstations. Journal of Parallel and
Distributed Computing, 69(2):117–124, feb 2009.

[22] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S
Talwalkar. Federated multi-task learning. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 4424–4434. Curran Associates, Inc.,
2017.

[23] Rashish Tandon, Qi Lei, Alexandros G. Dimakis, and Nikos
Karampatziakis. Gradient coding: Avoiding stragglers in dis-
tributed learning. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Re-
search, pages 3368–3376, International Convention Centre,
Sydney, Australia, 06–11 Aug 2017. PMLR.

[24] Jack Kosaian, KV Rashmi, and Shivaram Venkataraman. Par-
ity models: Erasure-coded resilience for prediction serving
systems. In Proceedings of the 27th Symposium on Operating
Systems Principles, SOSP ’19, 2019.

[25] Hsiang-Fu Yu, Cho-Jui Hsieh, and Inderjit S. Dhillon. Parallel
asynchronous stochastic coordinate descent with auxiliary
variables. In Kamalika Chaudhuri and Masashi Sugiyama,
editors, Proceedings of Machine Learning Research, volume 89
of Proceedings of Machine Learning Research, pages 2641–2649.
PMLR, 16–18 Apr 2019.

[26] János Körner. Coding of an information source having am-
biguous alphabet and the entropy of graphs. In 6th Prague
Conference on Information Theory, pages 411–425, 1973.

[27] Soheil Feizi and Muriel Medard. On network functional com-
pression. IEEE Transactions on Information Theory, 60(9):5387–
5401, sep 2014.

[28] Maya Kabkab, Azadeh Alavi, and Rama Chellappa. Dcnns on
a diet: Sampling strategies for reducing the training set size.
preprint, 2016.

[29] János Körner and Alon Orlitsky. Zero-error information the-
ory. IEEE Transactions on Information Theory, 44(6):2207–2229,
1998.

4


	Abstract
	1 Introduction
	2 FlexEnt System Description
	3 Entropy Graph Colouring
	4 Conclusion
	Acknowledgments
	References

