
Derecho’s Extensible, Intelligent Object Store

Weijia Song
wsong@cornell.edu
Cornell University

Matthew Milano
milano@cornell.edu
Cornell University

Sagar Jha
srj57@cornell.edu
Cornell University

Edward Tremel
edward@cs.cornell.edu
Cornell University

Xinzhe Yang
xy269@cornell.edu
Cornell University

Ken Birman
ken@cs.cornell.edu
Cornell University

CCS Concepts

• Computer systems organization → Distributed ar-
chitectures.

Keywords

Machine learning, Zero-Copy, RDMA, Derecho

ACM Reference Format:
Weijia Song, Matthew Milano, Sagar Jha, Edward Tremel, Xinzhe
Yang, and Ken Birman. 2019. Derecho’s Extensible, Intelligent
Object Store. In SOSP ’19: ACM Symposium on Operating System

Principles, October 27–30, 2019, Huntsville, Ontario. ACM, New
York, NY, USA, 3 pages.

1 Introduction

The Internet of Things (IoT) is increasingly coupled to cloud
computing and machine learning, enabling smarter power
delivery, smart highways and homes, intelligent health care
and even smart farms. Yet although cloud providers offer
all sorts of AI systems (examples include Microsoft Azure
IoT [2] and Amazon Kinesis [1]), none is optimized for low
latency, high volume decision-making at scale [8, 11–13].
A core challenge is data volume: IoT data (sensor records,
photos, videos, etc) is predicted to grow from 0.1 zettabytes
to 4.4 zettabytes just by 2020 [14]. Images and videos can
often be quickly checked for interesting content and discarded
immediately, yet in today’s cloud it is more common to just
upload and store everything, then process data later in big
batches. This will need to change for the IoT edge: it is
wasteful to write files, read them once, and then discard
them, and the edge often must react instantly on an event-
by-event basis, precluding batching.

Here, we argue that the next generation of machine learning
applications should be layered over a new form of object store
that employs standard APIs but is enhanced with machine-
learning components. The idea of layering functionality on an
object store is well accepted: many file systems and databases

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SOSP ’19, October 27–30, 2019, Huntsville, Ontario

© 2019 Association for Computing Machinery.

gain scalability this way [6, 15]. Our work extends this model,
blending ML functionality with a sharded object store to
allow a developer to customize the service. Moreover, our
solution is optimized to minimize unnecessary data movement
and to leverage hardware accelerators. The prototype was
built using Derecho, a fault-tolerant RDMA-based distributed
computing toolkit [4, 10].

2 Intelligent Object Store

Our work is still in progress but we have a working prototype,
illustrated in Figure 1. The system runs as a group of nodes.
Each node is a process targetted to run on a dedicated server.
Within an application, nodes are grouped into subgroups

that can be sharded if desired; the figure shows 3 shards
with 3 nodes in each.

The object store offers a key-value API that maps to the
underlying Derecho functionality but is intended as the sole
API visible to our machine-intelligence modules. These intel-
ligence modules consist of developer-supplied ML algorithms
coded using MXNet [7], a popular machine-learning infras-
tructure (we picked MXNet because it is implemented in
C++, matching Derecho). In the prototype, these modules
are compiled at the time the service is created, but ultimately
we should be able to also dynamically load them as DLLs.
The resulting service can then be managed by a standard
cloud App Service and used like any other service from web
page builders or “cloud functions” running in the function
tier of the cloud infrastructure.

We obtain the structure seen in Figure 1. A set of robot
clients explore the world, finding interesting objects that
they classify with help from the cloud. The example has two
subgroups: a function tier intended to run as a cloud layer
(with lightweight tasks that run in response to events and

Function Tier

Categorizer Tier

Shard 1
flowers, fruits, …

Shard 2
livestock, pets, …

Shard 3
vegetable, trees, …

②

③

Intelligent Object Store

①

⑥

⑤

⑤

④

Figure 1: Model Serving by Derecho

SOSP ’19, October 27–30, 2019, Huntsville, Ontario Song, et al.

terminate quickly), supported by a categorizer tier that uses
intelligent object store. The functions in the function tier
expose a load-balanced, RESTful API to clients, but all the
communication internal to the service runs over RDMA.

Since functions shouldn’t do heavy lifting, our function
tier limits itself to a preliminary categorization: perhaps the
client has found a flower, or a vegetable. Then it relays the
request to the corresponding shards within a fine-grained
categorizer tier. This categorizer holds specialized knowledge
(CNN models), sharded by model category. Since these models
are valuable, the shards holding them are replicated for fault-
tolerance; if a new model is learned or an existing one is
updated, an atomic multicast or a durable Paxos update
(Derecho supports both options) guarantees consistency.

It is helpful to walk the critical path. The client puts the
data in the object store then sends a request (1 2). Upon
receiving a classification request, the function tier coarsely
identifies it as a flower or vegetable (2). To request a finer-
grained classification, it forwards the request to a node in
shard 1 and another node in shard 3 since they contain
corresponding models (3). As seen, the two classifiers pulls
the photo from the object store (4) and we obtain a vector of
possibilities (5). The function tier node replies to the robot
with the most probable result(s) (6).

The exciting innovation is that whereas a normal object
store lacks intelligence, our Derecho object store can be
extended with AI/ML logic that runs right inside the store.
Thus whereas a normal cloud would have an object store
holding photos, our approach permits the creation of an object
store that will process incoming photos even before storing
them, using ML segmentation, classification, prediction, or
other functionality. Whereas the standard approaches tend
to break those steps up into a graph of loosely coupled tasks
(as in Spark or Tensor Flow), Derecho allows the developer
to shape key choices so that all of those steps will occur in a
single place – eliminating costly storage and copying.

3 Hardware Acceleration

Perhaps the most interesting challenge we confront is to lever-
age hardware accelerators such as GPU efficiently, without
forcing the service designer to implement the logic that moves
objects from place to place. The puzzle is that the ML appli-
cation simply expresses operations as MXNet computations
over data identified in a key-value manner, independent of
location. In our setting, data could be incoming over RDMA
whereas the ML model may have been stored in the object
store but saved in NVM (SSD or Optane). On the other
hand, a copy of the model might be cached in GPU memory
(and similarly for intermediate results from prior computa-
tional step). Thus, the runtime issue of object location and
placement poses a rich set of questions.

We tested a client/server setup where the client upload
photos to be identified with a ResNet-50 [9] on the server-side.
Photo data is written directly to the input layer of the neu-
ral network model with one-sided RDMA. Transferring one
photo takes only 81 microseconds with 100 Gbps InfiniBand
RDMA, but this soars to 5.2 milliseconds with TCP over 100

Gbps Ethernet. A GPU can run the classifier step in just
2.1 milliseconds [3]. Thus, an RDMA transfer is inexpensive
compared to the inference latency, but TCP would dominate
the cost of inference (worse, TCP also wastes CPU cycles
copying from user-space to kernel and back).

A further challenge has to been to avoid excessive copying
and locking: today’s operating system designs and APIs are
relaxed about both actions, yet copying within a node can
actually be far slower than moving data from one node to a
different one. Serialization and temporary disk writes further
slow the path, to a point that standard systems are many
orders of magnitude slower than the theoretical ideal. We are
not the first to encounter this issue (see, for example, Xue’s
study of unnecessary copying in TensorFlow [16]).

Moreover, GPU is not the only hardware accelerator of
interest. For example, when uploading photos in jpg format to
a service that will classify them using MXNet, one might wish
to use a bump-in-the-wire hardware accelerator to convert
from jpg format to the MXNet ndarray format is required.
Our design therefore adopts a perspective in which control
is separated from data movement, and in which hardware
accelerators can be situated at each hop of the data pipeline.

In the work completed as of today, we have extended Dere-
cho’s RDMA data paths to permit GPUs to efficiently access
data in Derecho’s key-value object store, with support for
caching if a GPU will access the same object repeatedly. A key
idea is to have the object store store immutable, temporally
versioned data. Such data can safely be cached without need
for a complex cache-invalidation protocol, hence by having
Derecho track GPU cache contents, we can dynamically iden-
tify an optimal data movement pattern. To further reduce
data copying, we manage memory using a system-wide mem-
ory map in which each node has a distinct address range of
RDMA-capable memory, pinned and registered at the outset.
Thus object pointers are meaningful system-wide. If a com-
putation references a remote object, a page-fault will occur,
and we then can redirect the request to a cached copy, fetch
the object and map it locally, or even ship the computation
to the remote location. In effect, much as Spark/DataBricks
schedules tasks in an RDD-aware manner, we should be
able to make real-time scheduling choices aimed at efficiency,
load-balancing, and effective use of accelerators.

4 Related Work

There are many efforts to improve the ease of machine learn-
ing on IoT data. Clipper uses caching and batching to improve
the latency as well as the throughput of a model serving sys-
tem [8]. Pretzel discourages containerization and suggests
reuse of sharing operators among models [11]. Ray introduced
a new scheduler to manage a large scale machine learning
system [12]. Closest to our work, Lu reimplemented gRPC
with RDMA to support fast data exchange in TensorFlow [5].
Xue removed the gRPC layer, performing tensor transfers
over RDMA to significantly improve TensorFlow training
throughput [16]. In contrast to these efforts, our work focuses
on optimization of the data path with zero-copy messaging,
and avoiding suprious copying and locking.

Derecho’s Extensible, Intelligent Object Store SOSP ’19, October 27–30, 2019, Huntsville, Ontario

References
[1] Amazon kinesis:easily collect, process, and analyze video and data

streams in real time. https://aws.amazon.com/kinesis/. Accessed:
2019-09-09.

[2] Azure iot: Empowering businesses and industries to shape the
future with the internet of things (iot). make things happen.
https://azure.microsoft.com/en-us/overview/iot/. Accessed: 2019-
09-09.

[3] Nvidia ai inference platform performance study. https:
//www.nvidia.com/content/dam/en-zz/Solutions/data-
center/gated-resources/inference-technical-overview.pdf.
Accessed:2019-09-10.

[4] Behrens, J., Jha, S., Birman, K., and Tremel, E. Rdmc: A
reliable rdma multicast for large objects. In 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN) (2018), IEEE, pp. 71–82.

[5] Biswas, R., Lu, X., and Panda, D. K. Accelerating tensorflow with
adaptive rdma-based grpc. In 2018 IEEE 25th International
Conference on High Performance Computing (HiPC) (2018),
IEEE, pp. 2–11.

[6] Brantner, M., Florescu, D., Graf, D., Kossmann, D., and Kraska,
T. Building a database on s3. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data
(New York, NY, USA, 2008), SIGMOD ’08, ACM, pp. 251–264.

[7] Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T.,
Xu, B., Zhang, C., and Zhang, Z. Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed systems.
arXiv preprint arXiv:1512.01274 (2015).

[8] Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gonzalez,
J. E., and Stoica, I. Clipper: A low-latency online prediction serv-
ing system. In 14th {USENIX} Symposium on Networked Sys-
tems Design and Implementation ({NSDI} 17) (2017), pp. 613–
627.

[9] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (2016), pp. 770–778.

[10] Jha, S., Behrens, J., Gkountouvas, T., Milano, M., Song, W.,
Tremel, E., Renesse, R. V., Zink, S., and Birman, K. P. Dere-
cho: Fast state machine replication for cloud services. ACM
Transactions on Computer Systems (TOCS) 36, 2 (2019), 4.

[11] Lee, Y., Scolari, A., Chun, B.-G., Santambrogio, M. D., Weimer,
M., and Interlandi, M. {PRETZEL}: Opening the black box of
machine learning prediction serving systems. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation
({OSDI} 18) (2018), pp. 611–626.

[12] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang,
E., Elibol, M., Yang, Z., Paul, W., Jordan, M. I., and Stoica,
I. Ray: A distributed framework for emerging AI applications.
In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18) (Carlsbad, CA, Oct. 2018), USENIX
Association, pp. 561–577.

[13] Stoica, I., Song, D., Popa, R. A., Patterson, D. A., Mahoney,
M. W., Katz, R. H., Joseph, A. D., Jordan, M. I., Hellerstein,
J. M., Gonzalez, J. E., Goldberg, K., Ghodsi, A., Culler, D., and
Abbeel, P. A berkeley view of systems challenges for AI. CoRR
abs/1712.05855 (2017).

[14] Studio, P. D. The iot data explosion: How big is the iot data
market? https://priceonomics.com/the-iot-data-explosion-how-
big-is-the-iot-data/. Accessed:2019-09-10.

[15] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D., and
Maltzahn, C. Ceph: A scalable, high-performance distributed
file system. In Proceedings of the 7th symposium on Operating
systems design and implementation (2006), USENIX Association,
pp. 307–320.

[16] Xue, J., Miao, Y., Chen, C., Wu, M., Zhang, L., and Zhou, L.
Fast distributed deep learning over rdma. In Proceedings of the
Fourteenth EuroSys Conference 2019 (2019), ACM, p. 44.

https://aws.amazon.com/kinesis/
https://azure.microsoft.com/en-us/overview/iot/
https://www.nvidia.com/content/dam/en-zz/Solutions/data-center/gated-resources/inference-technical-overview.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/data-center/gated-resources/inference-technical-overview.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/data-center/gated-resources/inference-technical-overview.pdf
https://priceonomics.com/the-iot-data-explosion-how-big-is-the-iot-data/
https://priceonomics.com/the-iot-data-explosion-how-big-is-the-iot-data/

	1 Introduction
	2 Intelligent Object Store
	3 Hardware Acceleration
	4 Related Work
	References

