
Willump: Statistically-Aware
Optimizations for Fast Machine Learning Inference

Peter Kraft, Daniel Kang, Deepak Narayanan, Shoumik Palkar, Peter Bailis, Matei Zaharia

1 Overview
The increasing prominence of ML in data centers today has
led to interest in systems for ML prediction serving, which
performML inference and serve predictions to user applica-
tions [4, 17]. These systems, called model serving systems,
typically approachML inference as an extension of conven-
tional data serving workloads, missing critical opportunities
to exploit the statistical nature of ML inference. Most of these
systems, such as Clipper [4], Amazon Sagemaker [1], and
Microsoft AzureML [2], treat ML inference as a black box and
implement generic systems optimizations such as caching
and adaptive batching. Some, such as Pretzel [10], also apply
traditional compiler optimizations.
These optimizations are useful in ML inference, just as

they are for web applications or database queries. However,
systems for optimizing ML inference can leverage two key
properties of ML not found in general data serving:

• MLmodels can often be approximated efficiently
on many inputs: For example, the computer vision
community has long used “model cascades” where a
low-cost model classifies “easy” inputs and a higher-
cost model classifies inputs where the first is uncer-
tain, resulting in much faster inference with negligible
change in accuracy [16, 18]. By contrast, existingmulti-
purpose model serving systems handle all data inputs
the same way.

• MLmodels are oftenused inhigher-level applica-
tion contexts, such as top-K queries. However, exist-
ing model serving systems are unaware of these query
modalities. Aswe show, tailoring inference to the query
(forWillump, top-K queries) can improve performance.

To leverage theseopportunities foroptimization,wepresent
Willump, a statistically-aware end-to-end optimizer for ML
inference. Willump targets a common class of ML inference
applications: those whose performance bottleneck is feature
computation. In these applications, a pipeline of transforma-
tions converts raw input data into numerical features used
by anMLmodel to make predictions. These applications are
common, especially when performing ML inference over tab-
ular data. For example, Pretzel’s study of ML inference at
Microsoft found that feature computation accounted for as
much as 99.7% of the runtime of some production Microsoft
ML inference applications [10]. Willump improves ML infer-
ence performance through two novel optimizations:

1)AutomaticEnd-to-endCascades: MLinferencepipelines
often compute many features for use in a model, but because

ML applications are amenable to approximation, it is often
possible to classify data inputs using only a subset of these
features. For example, in a pipeline that detects toxic online
comments, we may need to compute expensive TF-IDF vec-
torizations to classify some comments, but we can classify
others simply by checking for curse words.

However, selectively computing features is challenging be-
cause features vary by orders of magnitude in computational
cost and importance to the model and are often computation-
ally dependent on one another. Therefore, one cannot pick an
arbitrary set of features (e.g,. the least computationally inten-
sive) and expect to efficiently classify data inputs with them.

To address these challenges, Willump uses a dataflow anal-
ysis algorithm and cost model to identify important but in-
expensive features. With these features, Willump trains an
approximate model that can identify and classify “easy” data
inputs. For example, an approximatemodel for toxic comment
classification might classify comments with curse words as
toxic and cascade other comments to a more powerful model.
Willump automatically tunes its own parameters to select
the features that minimize expected query execution time
while meeting a target accuracy level. The concept of model
cascades has a long history in the ML literature [5, 7, 16], but
to the best of our knowledge, Willump is the first system to
automatically generate feature-aware and model-agnostic
cascades from input programs. Willump’s cascades deliver
speedups of up to 5× on real-world ML inference pipelines
without a statistically significant effect on accuracy.

2) Top-K Query Approximation: Willump automatically
optimizesan importantclassofhigher-levelapplicationqueries:
top-K queries. Top-K queries request a ranking of the K top-
scoring elements of an input dataset [6]. They are fundamen-
tally asymmetric: predictions for high-scoring data inputs
must be more precise than predictions for low-scoring data
inputs. Willump leverages this asymmetry by automatically
constructing a computationally simple approximate pipeline
to filter out low-scoring inputs.

SomeMLrecommendersystemsapproximate top-Kqueries
is a similar way using fast retrieval models [3]. However, they
develop these models manually. Because top-K optimization
is not automatic, existing ML model serving systems such
as Clipper or Pretzel do not optimize top-K queries, instead
naively scoring all elements of the input dataset. Unlike prior
work,Willumpautomatically constructs its approximatemod-
els and automatically tunes their parameters tomaximize per-
formance while meeting a target accuracy level. Willump’s



automatic top-K query approximation improves performance
on real-world servingworkloads by up to 10×, with negligible
impact on pipeline accuracy.

Willumpcomplementsend-to-endcascadesandtop-Kquery
approximationwithpowerful compileroptimizations.Willump
compiles a subsetofPython tomachinecode through theWeld
system [12, 13], in the process applying optimizations such as
loop fusion and vectorization. Compilation improves query
throughput by up to 4×.
Willump users write ML inference pipelines as functions

from raw inputs to model predictions in a dialect of Python.
Specifically, these functionsmust registermodel training, pre-
diction, and scoring functions, must be written as a series of
function calls, and must represent data using NumPy arrays,
SciPy sparse matrices, or Pandas dataframes. If an ML infer-
ence pipeline conforms to these rules, Willump can automat-
ically parse it into a graph of transformations and optimize it.

2 Evaluation
We evaluateWillump on several pipelines curated from en-
tries to major data science competitions hosted by Kaggle,
CIKM, andWSDM, listed inTable 1.Wefirst evaluateWillump
on offline batch queries, showing results in Figure 1. First, we
applyWillump’s compiler optimizations. These improve the
performance of all compilable benchmarks by up to 4.3×.
Then, we apply end-to-end cascades to all classification

benchmarks. For all benchmarks, we set an accuracy target
of 0.1% less than the accuracy of the original model, but we
did not observe a statistically significant change in accuracy
for any benchmark. End-to-end cascades improve benchmark
performance by up to 5×.

Interestingly, cascades are least effective on music, which
queries pre-computed features from an in-memory database.
This is very fast when compiled, so feature computation ac-
counts for a small portion of overall runtime and potential
gains from cascades are limited. In music-remote, wemoved
the features to a remote database, so querying themwasmore
costly and cascades became more effective, providing a 2.4×
speedup.
We then evaluateWillump on top-K queries, showing re-

sults in Figure 2. We useK =20, query over the entire valida-
tion set, and set a minimum precision of 0.95.
We first apply Willump’s end-to-end compiler optimiza-

tions to compilable benchmarks; these perform the same as
before. We then apply Willump’s top-K query approxima-
tion optimization. This produces performance improvements
ranging from 1.3-10×with precision always above the min-
imum. Smaller speedups occur in benchmarks with relatively
expensive models, such as music, as well as in benchmarks
where differences between scores of high-scoring candidates
were small (less than a hundredth of a percent), like product.

Benchmark Feature-Computing Operators Prediction Type Model

Toxic [15] String processing, N-grams, TF-IDF Classification Linear
Music [14] In-memory database lookup Classification GBDT
Music-Remote [14] Remote (Redis) data lookup Classification GBDT
Product [11] String processing, N-grams, TF-IDF Classification Linear
Instant [8] Model Stacking Classification Ensemble
Purchase [9] Automatically Generated Features Classification GBDT

Table 1. Properties of Willump’s benchmark workloads.

Python
Compile

Compile

+ Cascade

0

10K

Th
ro

ug
hp

ut
 (p

re
ds

/s
)

690 2180

10K

a) toxic

Python
Compile

Compile

+ Cascade

0

100K

22K

88K 94K

b) music

Python
Compile

Compile

+ Cascade

0

500

1000

270 270

650

c) music-remote

Python
Compile

Compile

+ Cascade

0

20K

40K

Th
ro

ug
hp

ut
 (p

re
ds

/s
)

4480
13K

28K

d) product

Python
Compile

Compile

+ Cascade

0

2K

5K

2690 2690

5240

e) instant

Python
Compile

Compile

+ Cascade

0

100

200
130 130

210

f) purchase

Figure 1.Willump performance on offline batch queries.

Python
Compile

Compile

+ Approximate

0

20K

Th
ro

ug
hp

ut
 (p

re
ds

/s
)

690 2180

21K

a) toxic

Python
Compile

Compile

+ Approximate

0

100K

22K

88K 106K

b) music

Python
Compile

Compile

+ Approximate

0

1000

300 300

790

c) music-remote

Python
Compile

Compile

+ Approximate

0

20K

Th
ro

ug
hp

ut
 (p

re
ds

/s
)

4480
13K

23K

d) product

Python
Compile

Compile

+ Approximate

0

2K

4K

6K

2670 2670

4990

e) instant

Python
Compile

Compile

+ Approximate

0

250

500

130 130

530

f) purchase

Figure 2.Willump performance on top-K queries.

Benchmarks with less expensive models and more differen-
tiation between high-scoring candidates, like music-remote
and and toxic, have larger speedups.

3 Contributions
In summary, we make the following contributions:
• We introduceWillump, a statistically-aware end-to-end
optimizer for ML inference pipelines.

• Weautomatically cascade feature computation, improving
ML inferenceperformance byup to 5×without statistically
significant accuracy loss.

• We automatically approximate top-K queries, improving
performance by up to 10×with minimal accuracy loss.

2



4 Acknowledgments
This research was supported in part by affiliate members and
other supporters of the Stanford DAWN project—Ant Finan-
cial, Facebook, Google, Infosys, Intel, Microsoft, NEC, SAP,
Teradata, and VMware—as well as Toyota Research Institute,
Keysight Technologies, Amazon Web Services, Cisco, and
the NSF under CAREER grant CNS-1651570. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

References
[1] 2019. Amazon SageMaker on AWS. https://aws.amazon.com/

sagemaker/
[2] 2019. Azure Machine Learning Service. https://azure.microsoft.com/

en-us/services/machine-learning-service/
[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar

Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, et al. 2016. Wide & deep learning for recommender
systems. In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems. ACM, 7–10.

[4] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. 2017. Clipper: A low-latency online
prediction serving system. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). 613–627.

[5] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram
Venkataraman, Paramvir Bahl, Matthai Philipose, Phillip B Gibbons,
and Onur Mutlu. 2018. Focus: Querying large video datasets with low
latency and low cost. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 269–286.

[6] Ihab F Ilyas, George Beskales, andMohamed A Soliman. 2008. A survey
of top-k query processing techniques in relational database systems.
ACMComputing Surveys (CSUR) 40, 4 (2008), 11.

[7] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. 2017. Noscope: optimizing neural network queries over video
at scale. Proceedings of the VLDB Endowment 10, 11 (2017), 1586–1597.

[8] Prashant Kikani. 2019. IG PCA + NuSVC + KNN + LR stack.
https://www.kaggle.com/prashantkikani/ig-pca-nusvc-knn-lr-stack

[9] Will Koehrsen. 2019. A Machine Learning Framework with
an Application to Predicting Customer Churn. https:
//github.com/Featuretools/predict-customer-churn

[10] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico
Santambrogio, MarkusWeimer, andMatteo Interlandi. 2018. PRETZEL:
Opening the Black Box of Machine Learning Prediction Serving
Systems. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). 611–626.

[11] Tam T Nguyen, Hossein Fani, Ebrahim Bagheri, and Gilberto Titericz.
2017. Bagging Model for Product Title Quality with Noise. (2017).

[12] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha
Thaker, Rahul Palamuttam, Parimajan Negi, Anil Shanbhag, Malte
Schwarzkopf, Holger Pirk, Saman Amarasinghe, et al. 2018. Evaluating
end-to-end optimization for data analytics applications in weld.
Proceedings of the VLDB Endowment 11, 9 (2018), 1002–1015.

[13] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan,
Holger Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia,
and Stanford InfoLab. 2017. Weld: A common runtime for high
performance data analytics. In Conference on Innovative Data Systems
Research (CIDR).

[14] rn5l. 2018. rn5l/wsdm-cup-2018-music. https://github.com/rn5l/
wsdm-cup-2018-music

[15] Bojan Tunguz. 2018. Logistic regression with words
and char n-grams. https://www.kaggle.com/tunguz/
logistic-regression-with-words-and-char-n-grams

[16] Paul Viola and Michael Jones. 2001. Rapid object detection using a
boosted cascade of simple features. In null. IEEE, 511.

[17] Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen,
Teck Khim Ng, Beng Chin Ooi, Jie Shao, and Moaz Reyad. 2018. Rafiki:
machine learning as an analytics service system. Proceedings of the
VLDB Endowment 12, 2 (2018), 128–140.

[18] Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher
Yu, and Joseph E Gonzalez. 2017. Idk cascades: Fast deep learning by
learning not to overthink. arXiv preprint arXiv:1706.00885 (2017).

3

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://azure.microsoft.com/en-us/services/machine-learning-service/
https://azure.microsoft.com/en-us/services/machine-learning-service/
https://www.kaggle.com/prashantkikani/ig-pca-nusvc-knn-lr-stack
https://github.com/Featuretools/predict-customer-churn
https://github.com/Featuretools/predict-customer-churn
https://github.com/rn5l/wsdm-cup-2018-music
https://github.com/rn5l/wsdm-cup-2018-music
https://www.kaggle.com/tunguz/logistic-regression-with-words-and-char-n-grams
https://www.kaggle.com/tunguz/logistic-regression-with-words-and-char-n-grams

	1 Overview
	2 Evaluation
	3 Contributions
	References

