
Adaptive Distributed Training of Deep Learning

Models

Luo Mai, Guo Li, Andrei-Octavian Brabete, Alexandros Koliousis, Peter Pietzuch

Imperial College London

lsds@imperial.ac.uk

1 Introduction

Deep Learning (DL) has revolutionised many application

fields [3, 10, 22] but the training of DL models is expensive:

it can take half a month [10] to several months [7] to achieve

state-of-the-art accuracy in real-world AI challenges [22, 23]

on a single GPU. To reduce the time to reach a desired train-

ing accuracy (time-to-accuracy), systems often adopt data

parallelism [6]: multiple GPUs train the replicas of a model

on data partitions, and synchronise replicas for collective

progress in training.

Users expect time-to-accuracy to decreasewithmoreGPUs.

This is challenging because it requires users to configure a

distributed DL system correctly. Training must utilise all

devices while the replicas converge to the desired accuracy.

In a given training scenario [2, 14], users typically decide

how to synchronise replicas by evaluating a wide range of

choices [2, 4, 11, 14, 16, 27], exhibiting trade-offs between

device utilisation and convergence: e.g. synchronous SGD (S-

SGD) [4] improves convergence but may incur network bot-

tlenecks; while asynchronous model averaging [16] keeps de-

vice utilisation high but may hurt convergence. Furthermore

users must decide on the hyper-parameters of distributed

replicas. This is non-trivial because modern DL systems ex-

pose many hyper-parameters [17], including the learning

rate, batch size and momentum, and each of them affects

how replicas converge [9].

Existing distributed DL systems [1, 5, 21] provide little sup-

port to users when deciding on synchronisation strategies

and hyper-parameters: (i) they usually come with specific

implementations of S-SGD, such as parameter servers [12]

or all-reduce systems [24]. In training scenarios in which S-

SGD is not effective, e.g. when training with stragglers [16],

Byzantine nodes [2] or small batch sizes [14], users must

implement custom solutions to synchronise replicas, making

the process of deciding on synchronisation strategies cum-

bersome [13] and difficult to assess [27]; (ii) existing systems

only support static hyper-parameters derived from empirical

experience when training specific models [10]. When the

level of parallelism is changed or the model is modified, users

must manually adjust hyper-parameters in a trial-and-error

fashion [9], resulting in wasted time and resources [8, 18].

We argue that, to help users make effective decisions

when scaling training, a distributed DL system must be de-

signed with adaptiveness in mind. Similar to self-driving

1 import training as tr

2 import monitoring as mon

3 import communication as comm

4 import control as ctrl

5 test

6 def adapt_batch_size(ctrl , noise):

7 n_peers = tr.exp_decay(noise, 0.01) / GPU_BATCH_SIZE
8 ctrl.barrier()
9 ctrl.rescale(n_peers)
10 ctrl.barrier()
10

11 def build_driver_program(sample , loss):

12 grads = tr.resnet(sample , loss).auto_diff ()

13 avg_grads = comm.all_reduce(grads)

14 optimiser = tr.optimiser(avg_grads)

15 noise = mon.noise(grads, avg_grads)
16 avg_noise = comm.all_reduce(noise)
17 c = ctrl.control(optimiser, avg_noise)
18 c.hook(adapt_batch_size, avg_noise)

Listing 1. A dynamic hyper-parameter policy

databases [19], which automate the setting of critical perfor-

mance parameters, such a system should help users (i) con-

figure flexibly how replicas synchronise with another; and

(ii) declare dynamic hyper-parameters that automatically

adapt according to monitored metrics, which reflect the con-

dition of replicas and the utilisation of devices.

2 Adaptive Training with KungFu

We have developed KungFu, a system that supports adaptive

training of DL models. We describe the design and benefits

of KungFu through a use case: a user wants to train a DL

model while adapting the number of parallel devices based

on the gradient noise scale (GNS) [18]. GNS is a statistical

measure for the signal-to-noise ratio of gradients. Intuitively,

when the ratio is small, using large batches of training data

is counter-productive; when the ratio is large, the model is

more resilient to large-batch training.

Adaptation primitives. We want to define a high-level

abstraction for specifying the adaptation logic of dynamic

hyper-parameters. KungFu expresses the adaptation logic

as primitives declared as part of a driver program, thus re-

quiring only low effort for implementing monitoring and

control. Such an abstraction also supports computation over

monitored metrics and the synchronisation of changes to

hyper-parameters in a distributed environment.

Listing 1 shows how KungFu expresses adaptation: (i) a

driver program includes monitoring operators that attach
to the training operators (e.g. in line 15, the gradient and

1

Monitor Control

Worker

Comm. Monitor Control

Worker

Comm.

Monitoring Control

Dataflow Worker

Communication

grads

Gradient traffic

Metric traffic

Dataflow Dataflow

avg_grads

noise avg_noise

optimiser

control

Figure 1. KungFu system overview.

average-gradient operators attach to a monitoring operator

for computing the GNS); (ii) collective communication opera-
tors compute global metrics (in line 16, an all-reduce operator

computes the average noise scale); and (iii) control operators
continuously evaluate monitored metrics and synchronise

modification to hyper-parameters (lines 17–19 register an

adaptation function called at each iteration of the training).

During control, we transform the noise scale to the number

of peers that best utilise the GPUs (line 7). Lines 8–10 create

a barrier to re-scale the cluster.

Embedding monitoring and control. We want to design

a DL system that can efficiently realise the above abstraction.

Today training metrics are often collected by external moni-

toring systems such as TensorBoard [25] or Prometheus [20].

Since such systems collect logs offline, the metrics become

only available after training, and users must derive static

hyper-parameter policies from them.

To enable efficient online monitoring and control, our

key idea is to embed the execution of monitoring and con-

trol primitives within the training infrastructure. Figure 1

shows this idea: each worker has a DL library that performs

training using dataflows. It creates a training dataflow aug-

mented with monitoring, communication and control oper-

ators, as defined in Listing 1. These operators are executed

asynchronously and reuse the result produced by the train-

ing operators (i.e. grads and avg_grads), without having to

interrupt the training and copy the data. In addition, the com-

munication operators use a networking layer that piggybacks

monitoring data with synchronised gradients. This not only

improves networking performance, but also reuses existing

scale-out mechanisms [13] in both training and monitoring.

Finally, the replicated control operators can be treated as an

execution barriers. This provides clear semantics to users

regarding when and where the changes to hyper-parameters

take place in a distributed setting.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

A
c
c
u
ra
c
y
 (
%
)

Time (seconds)

Dynamic Batch Size
Fixed Batch Size (256)
Fixed Batch Size (4096)

Figure 2. Time-to-accuracy of adaptive and static

batch size policies in KungFu (B denotes batch size.)

KungFu implementation.Wehave implemented the above

design as part of a distributed training library for Tensor-

Flow [1] called KungFu. The computation of GNS and the

associated batch size controller are implemented as Tensor-

Flow operators. To modify batch sizes dynamically, KungFu

fixes the batch size per dataflow, guaranteeing high GPU

utilisation, and implements a decentralised runtime that al-

lows TensorFlow nodes to join and leave with low overhead.

The KungFu runtime also features an efficient collective

communication layer so that the distributed measurement

of metrics does not lead to bottlenecks.

Experimental results.We implement the sample policy in

Listing 1 using KungFu. We evaluate the effectiveness of

this policy when training the ResNet-32 model [10] with the

CIFAR-10 dataset [15], as implemented by the TensorFlow

benchmarks [26]. The experiment runs on a 20-CPU-core

server with 4 NVIDIA Titan X GPUs. We compare our dy-
namic policy with two static policies that use small and large

batch sizes, 256 and 4096, respectively. We fix the learning

rate to 0.1 and compare the time to reach the shared maxi-

mum test accuracy (in our setting, 72%).

Figure 2 shows the time-to-accuracy results. The small-

batch policy benefits from a high statistical efficiency and

thus converges 50% faster than the large-batch policy, even

though its GPU utilisation is lower; the adaptive policy starts

with a small batch size of 128 and gradually reaches 4096 after

4 epochs, achieving the benefits of both small and large-batch

training. Hence, it exhibits the best time-to-accuracy, which

is 32% faster than the static small-batch policy, demonstrating

the low performance overhead of the KungFu approach.

We also evaluate the robustness of convergence for these

three policies, and let them train for 9 extra epochs after

reaching the target accuracy. The adaptive policy converges

to a more stable accuracy compared to the others. This im-

plies that the use of online monitoring metrics helps select

hyper-parameters that can best fit in the loss space, thus

improving the quality of minima.

2

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. TensorFlow: A System for Large-Scale Machine

Learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2016.

[2] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine Stochastic

Gradient Descent. In 32nd International Conference on Neural Informa-
tion Processing Systems (NIPS), 2018.

[3] Sercan Ömer Arik, Mike Chrzanowski, Adam Coates, Greg Diamos,

Andrew Gibiansky, Yongguo Kang, Xian Li, John Miller, Jonathan

Raiman, Shubho Sengupta, and Mohammad Shoeybi. Deep Voice:

Real-time Neural Text-to-Speech. arXiv:1702.07825 [cs.CL], 2017.

[4] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Józefowicz. Revis-

iting Distributed Synchronous SGD. arXiv:1604.00981 [cs.LG], 2016.

[5] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,

Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A

Flexible and Efficient Machine Learning Library for Heterogeneous

Distributed Systems. arXiv:1512.01274 [cs.DC], 2015.

[6] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Mark Mao, Marcaurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,

Quoc V. Le, and Andrew Y. Ng. Large Scale Distributed Deep Networks.

In 25th International Conference on Neural Information Processing Sys-
tems (NIPS), 2012.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding. arXiv:1810.04805 [cs.CL], 2018.

[8] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Archi-

tecture Search: A survey. arXiv:1808.05377 [stat.ML], 2018.

[9] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz

Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming

He. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.

arXiv:1706.02677 [cs.CV], 2017.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. CoRR, abs/1512.03385, 2015.
[11] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,

Phillip B. Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing.

More Effective Distributed ML via a Stale Synchronous Parallel Param-

eter Server. In 26th International Conferences on Neural Information
Processing Systems (NIPS), 2013.

[12] Yuzhen Huang, Tatiana Jin, Yidi Wu, Zhenkun Cai, Xiao Yan, Fan Yang,

Jinfeng Li, Yuying Guo, and James Cheng. FlexPS: Flexible Parallelism

Control in Parameter Server Architecture. PVLDB, 11(5):566–579, 2018.
[13] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong,

Feihu Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, Tie-

gang Chen, Guangxiao Hu, Shaohuai Shi, and Xiaowen Chu. Highly

Scalable Deep Learning Training System with Mixed-Precision: Train-

ing ImageNet in Four Minutes. arXiv:1807.11205 [cs.LG], 2018.

[14] Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo

Mai, Paolo Costa, and Peter Pietzuch. Crossbow: ScalingDeep Learning

with Small Batch Sizes on multi-GPU Servers. PVLDB, 12(11):1399–
1412, 2019.

[15] Alex Krizhevsky. Convolutional deep belief networks on cifar-10, 2010.

[16] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous De-

centralized Parallel Stochastic Gradient Descent. In 35th International
Conference on Machine Learning (ICML), 2018.

[17] Luo Mai, Alexandros Koliousis, Guo Li, Andrei-Octavian Brabete, and

Peter Pietzuch. Taming Hyper-parameters in Deep Learning Systems.

SIGOPS Oper. Syst. Rev., 53(1):52–58, 2019.
[18] SamMcCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team.

An Empirical Model of Large-Batch Training. arXiv:1812.06162 [cs.LG],

2018.

[19] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin

Ma, Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah,

et al. Self-Driving Database Management Systems. In 8th Biennial
Conference on Innovative Data Systems Research (CIDR), 2017.

[20] The Prometheus Monitoring System and Time-Series Database. https:
//github.com/prometheus/prometheus, 2019.

[21] PyTorch. https://pytorch.org, 2019.
[22] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.

Squad: 100,000+ Questions for Machine Comprehension of Text.

arXiv:1606.05250 [cs.CL], 2016.

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,

Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large

Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[24] Alexander Sergeev and Mike Del Balso. Horovod: Fast and easy dis-

tributed deep learning in TensorFlow. arXiv:1802.05799 [cs.LG], 2018.

[25] TensorFlow’s Visualization Toolkit. https://github.com/tensorflow/
tensorboard, 2019.

[26] TensorFlow Benchmarks. https://github.com/tensorflow/benchmarks,
2019.

[27] Pijika Watcharapichat, Victoria Lopez Morales, Raul Castro Fernandez,

and Peter Pietzuch. Ako: Decentralised Deep Learning with Partial

Gradient Exchange. In 7th ACM Symposium on Cloud Computing
(SoCC), 2016.

3

https://github.com/prometheus/prometheus
https://github.com/prometheus/prometheus
https://pytorch.org
https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/benchmarks

	1 Introduction
	2 Adaptive Training with KungFu
	References

