AliGraph: An Industrial Graph Neural Network
Platform

Kun Zhao, Wencong Xiao, Baole Ai, Wenting Shen, Xiaolin Zhang, Yong Li, Wei Lin
{kun.zhao,wencong.xwc,baole.abl,wenting.swt,xiaolin.zxl,jiufeng.ly,weilin.lw}@alibaba-inc.com
Alibaba Group

Abstract

We introduce AliGraph, an industrial distributed computa-
tion system for graph neural network (GNN). It empowers
end-to-end solutions for users to address their scenarios by
taking graph into deep learning frameworks. As an indepen-
dent and portable system, the interfaces of AliGraph can be
integrated with any tensor engine that is used for expressing
neural network models. By co-designing the flexible Gremlin-
like interfaces for both graph query and sampling, users can
customize data accessing pattern freely. Moreover, AliGraph
also shows excellent performance and scalability. It allows
pluggable operators to adapt to the fast development of GNN
community and outperforms existing systems an order of
magnitude in terms of graph building and sampling.

ACM Reference format:

Kun Zhao, Wencong Xiao, Baole Ai, Wenting Shen, Xiaolin Zhang,
Yong Li, Wei Lin. 2019. AliGraph: An Industrial Graph Neural Net-
work Platform. In Proceedings of Workshop on Al Systems at SOSP
2019, Ontario, Canada, Oct 27, 2019 (AI Systems ’19), 3 pages.

1 Introduction

Recent years, we have witnessed the burst of graph neu-
ral network (GNN) in many artificial intelligence fields, in-
cluding social networks [3], recommendations [6], neural
language understanding [2], etc. Graph is a natural data or-
ganization in industrial cases. The training samples of many
deep learning tasks usually date from a graph, such as the
model for a recommender system, the relationship between
user and item forms a heterogeneous graph. Unfortunately,
the value of graph data has not been fully exploited due to
the system constraints. The raw graph data is heterogeneous,
probably reaching a size with billions of vertices and tens
of billions edges. Both vertices and edges have multiple at-
tributes attached on. To perform deep neural network on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Al Systems °19, Oct 27, 2019, Ontario, Canada

© 2019 Association for Computing Machinery.

ACMISBN .

£ 1

, \
Sampler 1
F 1
.

1
T T R T BT

N

\
I

Checkpoint i

i

i

i

[oors W e W e W swn W oss W rors]

Figure 1. AliGraph overview.

such a graph, a lot of pre-processing (e.g., data aligning),
need to be carried out to fill up the deficiency of tensor based
deep learning frameworks, such as TensorFlow [1] or Py-
Torch [4], consuming great computation power and storage
space. Moreover, researchers/developers desire an integrated
system to perform end-to-end training with loss function
directly mapping to the raw data.

We introduce AliGraph, an industrial GNN platform that
aims for end-to-end solutions, to serve researchers and de-
velopers. AliGraph provides an integrated development en-
vironment that empowers the whole procedure from data
storage to application models, which largely reduces the
cost of GNN exploration. We abstract SAMPLING, AGGRE-
GATION, and COMBINATION to describe a GNN model[7].
Figure 1 illustrates the architecture of AliGraph in five lay-
ers. We can generally divide it into a graph engine and a
tensor engine. The graph engine takes charge of data pre-
processing, graph building and sampling, providing APIs
that simplify the distributed graph data access. The tensor
engine, which is used to describe the neural network, has
many alternatives. We just need to confirm that the data
stream between the two engines is available.

In the next section, we describe three new design high-
lights of AliGraph, compared to our VLDB paper [7]:

e Co-design interface for graph query and sampling.

e Pluggable operators for GNN ecosystem.

e Distributed threading model for accelerating large-
scale graph construction.

2 AliGraph

2.1 Unified Graph and Sampling API

Since the fast developing of GNN algorithms and complicated
industrial requirement, the system API design should be flex-

ible to support the newly proposed algorithms while com-
patible with the existing approaches. In AliGraph, we adopt

N

Al Systems ’19, Oct 27, 2019, Ontario, Canada

the interface design principle of Gremlin [5] and extend it to
support flexible multi-hop sampling and customized sampler.
Figure 2 illustrates a typical two-hop sampling path in a
recommendation scenario whose graph data consists of user
and item vertices. Listing 1 demonstrates how to implement it
with Gremlin like API. The sampler starts from user vertices
and then samples a batch of 512 user vertices randomly. For
each sampled user vertex, sampling for 10 neighbor edges
from user to item with probability proportional to the edge
weight (EdgeWeight sampler) is performed. Thereby, a total
of 5120 item vertices are selected. The second-hop sampling
considers the outer edge set of each selected item vertex and
samples the top 5 (TopK sampler) edges from item to item
sorted by edge weight. In total, 31232 vertices are sampled,
including 512 user vertices and 30720 item vertices, together
with 5120 user-item edges and 25600 item-item edges.
Note that, alongside with some built-in operators such
as EdgeWeight and TopK sampler in this example, AliGraph
also supports customized sampler for advanced users.
U

y

g ltem 4 ltem
\ \

@ A

&
| User
A

Figure 2. A two-hop sampling example.
from aligraph import *
g = Graph()
g.V("user").shuffle().batch(512)
.outE("u2i").sample(10).by("EdgeWeight").inV()
LOoutE("i2i").sample(5).by("TopK").inV ()

Listing 1. A two-hop sampling example

2.2 Pluggable Operators

AliGraph is extensible to empower our users to customize
samplers and other operators. Usually, when defining a sam-
pler, developers have to consider not only the implementa-
tion of the sampler’s functionality on a local server, but also
how to partition the request and stitch the sub-responses
for distributed sampling. Our framework simplifies the user
efforts by hiding some system implementation details, such
as RPC and message dispatching. First of all, the developer
should define the schema of a sampler as illustrated in List-
ing 2, including parameters, inputs, and outputs.

import aligraph

aligraph.DefineOp(Name="MySampler")

.Param(type="int", shape=[])
.Input(type="int", shape=[-11])
.OQutput (type="int", shape=[-1])

.OQutput (type="float", shape=[-1])

Listing 2. Define the schema of a customized sampler

After that, the abstract functions Process(), Map(), and
Reduce() need to be implemented by the developer. AliGraph
will drive the sampler as described in Algorithm 1. Therefore,
developers can use the sampler with the corresponding name
as indicated in Listing 3.

K. Zhao et al.

1 g.V("user").shuffle().batch(512)

.outE("u2i").sample(10).by("MySampler").inV()

Listing 3. An example of a user defined sampler

Algorithm 1 The Execution Framework of an Sampler

1: Given Context and Sampler.

2: Context supplies interfaces to access parameters, inputs, and outputs. Process()
is implemented in the Sampler. It will access the data through Context and fill
the response on local server.

3: The customized Map() and Reduce() will be implemented in the Context.
Map() will partition the context into small pieces indexed by server id, and
Reduce() will stitch sub-responses into a whole one.

4:
5: if Context.server_id = current_server_id then
6: Sampler.Process(Context)
7: return
8: else

9: context_list = Context.Map()
10: endif
11: forall ctx € context_list do
12: Call(ctx.server_id, ctx)
13: end for

15: Context.Reduce(context_list)

2.3 Lock-Free Multi-thread Graph Building

Graph building is a blocking stage which must be ready be-
fore data accessing. For large-scale graph data, distributed
graph construction can last for hours. The whole graph data
needs to be partitioned into servers and network communi-
cation is required to exchange data among servers through
RPC. The partition strategy varies from different cases.

To construct heterogeneous and attributed graphs from
rawdata, three main phases are needed, including data read-
ing and parsing, graph partitioning and dis-patching, and
memory indexing. We propose a lock-free multi-thread method
to reduce the time cost, which takes just several minutes to
build a heterogeneous and attributed graph with billions of
vertices and tens of billions edges. Figure 3 demonstrates
data exchanges between two servers when building a graph.

More specially, we use multiple threads to read the raw
graph data from file system independently. The raw data
will be parsed and partitioned into pieces based on a given
strategy. Some of them will be directed to the corresponding
queues at the local server, and the others will be dispatched
to other servers through RPC. Each processing thread is
bonded to a data queue, consuming data and building graph
structure in memory. The other servers who receive data
through RPC will also put the data to the corresponding data
queue in local, and the processing thread treats the received
data in a consistent way of the local data for processing.

LOADING THREAD LOADING THREAD o (Demcuese || ((DamGuee || [Detaqueue ||

Ce=m=) Processe | [processiia | [processivo

: D THREAD THREAD

v N I

| e DD D aED
= Fp & & e

[vata Queve (‘ [Da,aqum [\ (" pata queue [] LOADING THREAD LOADING THREAD

) J U

—— T

N N i
| D e @ g T
= = Jp == R

Figure 3. Lock-Free threading model when building graph.

AliGraph: An Industrial Graph Neural Network Platform

References
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16). 265-283.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Mat-
sumoto. 2017. Knowledge transfer for out-of-knowledge-base entities:
A graph neural network approach. arXiv preprint arXiv:1706.05674
(2017).

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representa-
tion Learning on Graphs: Methods and Applications. IEEE Data Eng.
Bull. 40, 3 (2017), 52-74. http://sites.computer.org/debull/A17sept/p52.
pdf

Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan.
2017. Pytorch: Tensors and dynamic neural networks in python with
strong gpu acceleration. PyTorch: Tensors and dynamic neural networks
in Python with strong GPU acceleration 6 (2017).

Marko A. Rodriguez. 2015. The Gremlin Graph Traversal Machine
and Language. CoRR abs/1508.03843 (2015). arXiv:1508.03843 http:
//arxiv.org/abs/1508.03843

Ziqi Wang, Yuwei Tan, and Ming Zhang. 2010. Graph-based recom-
mendation on social networks. In 2010 12th International Asia-Pacific
Web Conference. IEEE, 116-122.

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole
Ai, Yong Li, and Jingren Zhou. 2019. AliGraph: A Comprehensive
Graph Neural Network Platform. PVLDB 12, 12 (2019), 2094-2105.
http://www.vldb.org/pvldb/vol12/p2094-zhu.pdf

Al Systems ’19, Oct 27, 2019, Ontario, Canada

http://sites.computer.org/debull/A17sept/p52.pdf
http://sites.computer.org/debull/A17sept/p52.pdf
http://arxiv.org/abs/1508.03843
http://arxiv.org/abs/1508.03843
http://arxiv.org/abs/1508.03843
http://www.vldb.org/pvldb/vol12/p2094-zhu.pdf

	Abstract
	1 Introduction
	2 AliGraph
	2.1 Unified Graph and Sampling API
	2.2 Pluggable Operators
	2.3 Lock-Free Multi-thread Graph Building

	References

