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1 INTRODUCTION
Beyond higher wireless bandwidth and denser connectivity,

5G networks promise the availability of computation at the

edge, either collocated with the mobile base station or in

close proximity. Ideally, each edge site should be able to run

computation for nearby mobile users and IoT devices (could

reach thousand of devices per cell), and the computation

should follow the users as they roam through the 5G network.

Achieving this vision is difficult because of the scarcity of

edge compute resources and the high load variations due to

roaming users.

A common denominator of all mobile edge apps is their

reliance on machine learning inference tasks at the edge, be

it image recognition, speech-to-text, object tracking, and so

forth. To realize the promise of edge computing for machine

learning, we propose to exploit the accuracy-resource usage

tradeoff andmake the best out of edge resources by using less

precise but cheaper models when load is high, and precise

models when computation abounds. Our main contribution

is a control algorithm that is independently used by the

clients and the edge servers to achieve this goal dynamically.

2 ACCURATE OR CHEAP?
Most DNNs are trained offline and then they are deployed

in production where they run inference on new data. In this

paper we focus on the inference phase that should be run

at the network edge and use MobileNet [3] to understand

the constraints when deploying such models. MobileNet has

two hyperparameters (depth and size multiplier) which allow

users to trade the accuracy of the classification versus the

processing cost for each image. To understand this tradeoff,

we select different values for these hyperparameters and use

the ImageNet dataset to measure the inference, accuracy and

energy consumption on two possible edge architectures: an

Arm SOC (Exynos Octa 8890 2.6 GHZ) and a AMD Ryzen

processor with 6 cores running at 3.6GHZ.

On the x86 machine, the most expensive model takes more

than 50ms for inference and has a top-1 accuracy of 71%,

whereas the cheapest model takes just 2ms, but has a top-1

accuracy of around 40%. Figure 1 plots the tradeoff between

accuracy and CPU cycles used for both the x86 and the Arm

machines. The graph shows a linear increase for inference

time until accuracy hits 60%; after that significantly more

cycles are needed to increase accuracy. The curves are quali-

tatively similar for the two platforms, but Arm running the

standard model with 32 bit weights is five times slower on

average than the x86 machine. On Arm we also test a quan-

tized model running with 8 bit weights which halves the

inference time with negligible impact on accuracy.

These results show that by carefully selecting the accuracy

of the models used, it should be possible to cope with a very

wide range of loads on fairly modest hardware—whichmeans

great news for edge computing.

For image-based workloads, the results also show that

picture resolution has a big effect on CPU consumption:

there is a linear dependence between the number of pixels

in the image and the resulting inference time.

The same dependence holds for transmission of images

over the cellular network from the mobile clients or IoT

devices to the edge computing site. In cases when bandwidth

and not computation is the resource bottleneck, we again

have a tradeoff between transmission time and accuracy. We

can use this tradeoff by sending lower resolution images

when the network is overloaded.

3 ADAPTIVE EDGE INFERENCE
We want to answer the following question: given a stream

of inference requests from users, which models should be

used to ensure the highest overall accuracy while ensuring

that inference time is bounded?

We are interested in the online version of this problem,

where a decision must be taken when an inference request

arrives, without knowing subsequent requests.

As both the computation or the bandwidth can be the

limiting factor, a solution must involve both the client and

the mobile edge; we require that the amount of coordination

between these is minimal, to reduce barriers to deployment

(i.e. an edge solution should work without client support,

and the reverse).

At the edge, we use the following greedy solution: upon

request arrival, we estimate the time needed to serve the

request using the different models in decreasing order of ac-

curacy. We choose the highest model that provides a latency

below the system-wide latency bound T .
The same solution is not applicable at the mobile client,

since request latency depends on the unknown load at the

edge and on the variable capacity of the network. In this

black-box context, we use a similar greedy solution which

has the image size and changes it to a lower resolution based

on the request latency. The control algorithm is the following,

assuming the current resolution of the image is Ri :
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Figure 3: Increasing load gently re-
duces accuracy at the edge.

(1) If the latency is greater thanTCupper and i < k change

input image to size Ri+1.
(2) If the latency is smaller thanTClower and i > 1 change

input image size to Ri−1.

After a size change, we postpone taking a new decision until

the effects of the previous action can be measured. For these

two control loops to work well together, the thresholds at

the client must be higher than the latency bound used at the

edge (i.e. TCupper > T , TClower > T ).
The architecture of our edge inference implementation is

shown in figure 2. The server can be used for any inference

task where different models are available that solve the same

problem with different accuracy and resource costs. The

server loads themodels inmemory, but is otherwise oblivious

to their internal details. The only requirement is that the

server is given an ordering of models from highest to lowest

accuracy.

Our server accepts client connections and receives images

from clients which are then used for inference using one

of multiple models pre-loaded in memory. After receiving

a request from the client, the dispatcher thread decides the

queue for the request which implicitly selects the accuracy

and the inference time. To copewith varying load, the latency

threshold T is used to decide when a lower accuracy model

should be used. When a request arrives, queues are examined

starting from the highest accuracy to the lowest one. For each

queue, we keep a moving average of the inference time for

that model; using this, we estimate the latency of the new

request if it is placed in that queue. If the estimated latency is

lower thanT we enqueue the request, otherwise we continue

to the next queue. If we reach the last queue, the request is

always enqueued in it, regardless of the latency estimate.

4 PRELIMINARY EVALUATION
For testing purposes we evaluated the control loop by using

clients which issues inference requests by sending images

to the server in a closed loop. We increase load steadily by

adding more clients. Our edge used 16 different preloaded

models from MobileNet.

In figure 3, we plot the average accuracy of the system

against time: the system starts by using the highest accu-

racy model, but as more requsts are generated the server

switches to models that are less computationally expensive.

As a consequence of this, the accuracy starts to fall, reaching

a global minima when the requests are placed only in the

last queue by the scheduler. The latency of all requests was

under 500ms (now shown).

As next steps we intend to test the system using different

values for the parameters of the system, like: the latency

time, the control loop trigger period (on the client and on the

server side), the client timeout period before taking another

decision regarding the image size. Another direction is to use

more expensivemodels (e.g. ResNet, Inception) to understand

whether memory usage becomes a limiting factor.

5 RELATEDWORK
A few works focus on running inference on the mobile or the

cloud. Neurosurgeon [8] partitions the neural network work-

load between the cloud and a mobile device targeting a lower

latency or lower energy consumption. MCDNN [4] aims to

improve both accuracy and mobile energy consumption by

switching between different models. Our approach is similar

in that it aims to improve accuracy for compute-constrained

settings, but does so in a multi-tenant edge setting.

Mainstream [7] is a video processing system that offers

throughput maximization for multiple applications that are

sharing the same video stream by using transfer learning to

construct models with different level of specialization. Our

approach assumes all tenants run the same task, and wants

to improve accuracy within the given time-budget.

A series of other works [12, 6, 10, 5, 9, 11, 2, 1, 13, 5]

focus on specifics of video processing in a bid to improve

accuracy. Understanding how our system can be applied to

video inference is our future work.
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