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Looking Back on Al Systems

Going back to when | started graduate school ...



ML SyStems
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Machine learning community
has had an evolving focus on Al Systems

Fast Distributed Deep Learning
Algorithms Algorithms Frameworks

2017

2006

ML for Machine Learning
Systems Frameworks

Integration of

— ..
Communities



Learning

Big Model

The focus of Al Systems research has been on model fraining.



Big Model

Enabling Machine Learning and Systems Innovations

Stochastic Distributed Deep Learning
Optimization Dataflow Systems (CNN/RNN)
Domain Specific Symbolic GPU / TPU

Languages (TensorFlow) Methods Acceleration
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Learning Drive Actions




Learning Prediction
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Prediction
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Big Model
: Application
Goal: ~10 ms under heavy load
- Complicated by Deep Learning
= New ML Algorithms and Systems



Support low-latency, high-throughput serving workloads
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Models getting more complex
» 10s of GFLOPs [1]

» Recurrent nets . : o
Deployed on critical path Using specialized

» Maintain latency goals under heavy load har d\A{OF. e for
[1] Deep Residual Learning for Image Recognition. He et al. CVPR 2015. pre dlc flons



Google Translate

Serving

Google = 0 &

Translate Turn off instant translation o

140 billion words a day'

\ ) 0/5000

32,000 GPUs
running 24/7

Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, f.ukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

“If each of the world’s Android phones
used the new Google voice search for just

three minutes a day, these engineers
realized, the company would

need twice as many data centers.”
— Wired

Designed New Hardware!

Tensor Processing Unit (TPU)

[1] https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html



Prediction-Serving Challenges
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Large and growing
ecosystem of ML models
and frameworks



Wide range of
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Wide range of
qppllcahon and frameworks

NETFLIX
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One-Off Systems for High-Value Tasks

Problems:

Expensive to builld and maintain
» Requires Al + Systems expertise

Tightly-coupled model, framework, and application
» Difficult to update models and add new frameworks



Prediction Serving is an Open Problem

» Computationally challenging
» Need low latency & high throughput

» No standard tfechnology or abstractions for serving models
Prediction

l.é ( IDK Fredcter

Low LGTency Learning fo make fast predictions

Prediction Serving System [Workiin Progress]
INSDI'17]




Clipper

Low Latency Prediction
Serving System

Daniel Xin Giulio Corey Alexey lon
Zhou Zumar Tumanov Stoica

Crankshaw  Wang



Wide range of
qppllcahon and frameworks
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NETELIK

Middle layer for prediction serving.

Common System
Abstraction Optimizations
. DatoyK g
AAAAAA y P e ERRAT
Spark Caffe  Tensor mxnet @KALDI



Clipper Decouples Appllcatlons and Models

NETELIX S
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Clipper Architecture

Predict § RPC/REST Interface § opserve
Clipper

Combine predictions across frameworks Model Selection Layer

Provide a common interface and
system optimizations

Model Abstraction Layer

Model Container (MC)

APACHE




Optimized Cachin Common Model
Batching J API Isolation

Provide a common interface and
system optimizations

Model Abstraction Layer




Batching to Improve Throughput
» Why batching helps:

A single

page load
may generate
many queries

Throughput-optimized frameworks

15000

Throughput

0

10000 -
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| | | |
0 50 100 150 200

Batch size

» Optimal batch depends on:
» hardware configuration
» model and framework
» system load

Clipper Solution:
Adaptively tradeoff latency and throughput...

» Inc. batch size until the latency objective
Is exceeded (Additive Increase)

> |If latency exceeds SLO cut batch size by
a fraction (Multiplicative Decrease)
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Overhead of decoupled architecture

o S

Predict I RPC/REST Interface I Feedback

Clipper

rrc]

Predict§ RPC Interface

TensorFlow-
Serving

rrcl rrc]  Rrecl

f

TensorFlow




Overhead of decoupled architecture
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Decentralized system matches performance of centralized design.



Provide a common interface and
system optimizations

Model Abstraction Layer




Combine predictions across frameworks Model Selection Layer



Combine predictions across frameworks Model Selection Layer

0\/\ Version 1
§ § .m Version 2 Periodic l’el‘l’a/l’)lﬂg
‘ 7 Version 3
. :
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TensorFlow

Experiment with new
models and frameworks

Caffe




Selection Policy can Calibrate Confidence
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Selection Policy: Estimate confidence

8 ImageNet

&U B confident [ 1 unsure
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Selection Policy: Estimate confidence

O ImageNet
&U B confident [ 1 unsure
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width is
percentage of
query workloads



/.é( Open Research Questions

» Efficient execution of complex model compositions
» Optimal batching to achieve end-to-end latency goals

> Automatic model failure identification and correction
» Use anomaly detection technigues to identify model failures

» Prediction serving on the edge
>  Allowing models to span cloud and edge infrastructure

http://clipper.ai




- Low Latency

Prediction Serving System
INSDI'17]



Prediction

I D K Cascades

Learning to make fast predictions.
[Work in Progress]




Accuracy Relative Cost
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Model costs are increasing much
faster than gains in accuracy.



Prediction

IDK

Cascades
Simple models for simple tasks , AR Al .
_ Xin Yika Daniel Alexey
https://arxiv.org/abs/1706.00885 Wang Luo  Crankshaw Tumanov
Query Simple Model ACRE |\ - rgte Model
Know
Fast Slow
Prediction Prediction

Combine fast (inaccurate) models with slow (accurate) models
to maximize accuracy while reducing computational cosfts.



Query Simple Model : ResNet152

AcCcuracy Relative Cost
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37% reduction in runtime
@ no loss in accuracy
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Prediction Prediction

> Cascades within a Model
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Query Simple Model IK?I,,%”V;T y Accurate Model
Fast Slow

Prediction Prediction
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> Cascades within a Model
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Cascading reduces computational cost
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HAHW

Future Directions for Cascades

» Using reinforcement learning fechniques to reduce
gating costs

> Query triage during load spikes - forcing fractions
of the network to go dark

> lrregular execution -
» complicates batching
> |Issues for parallel execution



I D KPrediction
l Cascades
ﬁw Latency Simple models for simple tasks

Prediction Serving System [Work in Progress]
INSDI'17]

Other Al Systems Projects in RISE

Jarvis 1Ra
Managing the Machine 11 Distributed

ing Li 3 Python f
Learning Lifecycle L ython for

~— —® Reinforcement Learning




UC Berkeley

We are developing new technologies that will
enables applications to make low-latency intelligent
decision on live data with strong security guarantees.

Joseph E. Gonzalez
jegonzal@cs.berkeley.edu




