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Looking Back on AI Systems
Going back to when I started graduate school …





Machine learning community
has had an evolving focus on AI Systems
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The focus of AI Systems research has been on model training.
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Goal: ~10 ms under heavy load
Complicated by Deep Learning
è New ML Algorithms and Systems



Models getting more complex
Ø 10s of GFLOPs [1]

Ø Recurrent nets

Support low-latency, high-throughput serving workloads

Deployed on critical path
Ø Maintain latency goals under heavy load
[1] Deep Residual Learning for Image Recognition. He et al. CVPR 2015.

Using specialized 
hardware for 
predictions



Google Translate
Serving

82,000 GPUs 
running 24/7

[1] https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

140 billion words a day1

Designed New Hardware!
Tensor Processing Unit (TPU)

“If each of the world’s Android phones 
used the new Google voice search for just 
three minutes a day, these engineers 
realized, the company would 
need twice as many data centers.”
– Wired



Prediction-Serving Challenges

???
Create VWCaffe 14

Large and growing 
ecosystem of ML models 

and frameworks

Support low-latency, high-
throughput serving workloads



Wide range of 
application and frameworks
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One-Off Systems for High-Value Tasks

Problems:

Expensive to build and maintain
Ø Requires AI + Systems expertise 

Tightly-coupled model, framework, and application
Ø Difficult to update models and add new frameworks



Prediction Serving is an Open Problem
Ø Computationally challenging

Ø Need low latency & high throughput

Ø No standard technology or abstractions for serving models

Low Latency 
Prediction Serving System

[NSDI’17]

IDK Prediction
Cascades

Learning to make fast predictions
[Work in Progress]
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Middle layer for prediction serving. 
Common 

Abstraction
System

Optimizations

Create VW
Caffe 21
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Clipper Decouples Applications and Models

Applications
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Clipper Architecture
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Clipper

Applications
Predict ObserveRPC/REST Interface

Model Selection LayerCombine predictions across frameworks
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Caffe
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A single 
page load 
may generate
many queries

Batching to Improve Throughput
Ø Optimal batch depends on:

Ø hardware configuration
Ø model and framework
Ø system load

Ø Why batching helps:

Th
ro

ug
hp

ut

Throughput-optimized frameworks

Batch size

Clipper Solution:

Adaptively tradeoff latency and throughput…

Ø Inc. batch size until the latency objective 
is exceeded (Additive Increase)

Ø If latency exceeds SLO cut batch size by 
a fraction (Multiplicative Decrease)
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TensorFlow-
Serving

Predict RPC Interface

Applications

Overhead of decoupled architecture

Clipper
Predict FeedbackRPC/REST Interface

Caffe
MC MC MC

RPC RPC RPC RPC

Applications

MC



Throughput
(QPS)

Better P99 Latency
(ms)

Better

Overhead of decoupled architecture

Decentralized system matches performance of centralized design.
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Clipper
Predict ObserveRPC/REST Interface

MC MC MC
RPC RPC RPC RPC

Model Container (MC)

Caffe

Model Abstraction LayerProvide a common interface and 
system optimizations

Model Selection LayerCombine predictions across frameworks
Ca
ffe

Version 1

Version 2

Version 3

Periodic retraining

Experiment with new 
models and frameworks
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Selection Policy can Calibrate Confidence

Policy

Version 2

Version 3
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Open Research Questions

Ø Efficient execution of complex model compositions
Ø Optimal batching to achieve end-to-end latency goals

Ø Automatic model failure identification and correction
Ø Use anomaly detection techniques to identify model failures

Ø Prediction serving on the edge
Ø Allowing models to span cloud and edge infrastructure

http://clipper.ai
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IDK Prediction
Cascades

Simple models for simple tasks
Daniel

Crankshaw
Xin

Wang
Alexey

Tumanov
Yika
Luo

Query Simple Model

Prediction

Accurate Model

Prediction

I don’t
Know

Fast Slow

Combine fast (inaccurate) models with slow (accurate) models 
to maximize accuracy while reducing computational costs.

https://arxiv.org/abs/1706.00885
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Cascading reduces computational cost
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Number of Layers Skipped

Skip More Skip More Skip Less Skip Less

Difficult ImagesEasy Images



Future Directions for Cascades

Ø Using reinforcement learning techniques to reduce 
gating costs

Ø Query triage during load spikes à forcing fractions 
of the network to go dark

Ø Irregular execution à
Ø complicates batching
Ø Issues for parallel execution



Low Latency 
Prediction Serving System

[NSDI’17]

IDKPrediction
Cascades

Simple models for simple tasks
[Work in Progress]

Jarvis
Managing the Machine 
Learning Lifecycle

Ray
Distributed      Python for 
Reinforcement Learning 

Other AI Systems Projects in RISE



We are developing new technologies that will 
enables applications to make low-latency intelligent 
decision on live data with strong security guarantees.

Joseph E. Gonzalez
jegonzal@cs.berkeley.edu


