ACCELERATED COMPUTING FOR AI

Bryan Catanzaro, 28 October 2017

DEEP LEARNING BIG BANG

Deep Learning

NVIDIA GPU

WHY IS DEEP LEARNING SUCCESSFUL

RESEARCH AS A SEQUENTIAL PROCESS

Goal: reduce latency of idea generation

COMPUTATIONAL EVOLUTION

Deep learning changes every day

New solvers, new layers, new scaling techniques, new applications for old techniques, and much more...

CUDA

Programming system for accelerated computing

C++ for accelerated processors

On-chip memory management

Asynchronous, parallel API

Programmability makes it possible to innovate

10 years of investment

New layer? No problem.

CUDA LIBRARIES

Optimized Kernels

CUBLAS: Linear algebra

So many flavors of GEMM

CUDNN: Neural network kernels

Convolutions (direct, Winograd, FFT)

Can achieve > Speed of Light!

Recurrent Neural Networks

Image data	
D0 D1 D2 D0 D1 D2 I	D0 D1 D2 D4 D5 D7 D8
D3 D4 D5 D3 D4 D5 I	D3 D4 D5 D3 D4 D6 D7
D6 D7 D8 D6 D7 D8 I	D6 D7 D8 D1 D2 D4 D5
D [0,0,:,:] D [0,1,:,:]	<i>D</i> [0,2,:,:] D0 D1 D3 D4
	N = 1 D4 D5 D7 D8
Filter data	C = 3 D3 D4 D6 D7
F0 F1 F0 F1	$H = 3 \qquad D1 D2 D4 D5$
F2 F3 F2 F3 F2 F3	W = 3 $K = 2$ D0 D1 D3 D4
<i>F</i> [0,:,:,:]	$\begin{array}{c c} R &= 2 \\ R &= 2 \end{array} D4 D5 D7 D8 \end{array}$
G0 G1 G0 G1 G0 G1	S = 2 D3 D4 D6 D7
G2 G3 G2 G3 G2 G3	u=v = 1 $D1 D2 D4 D5$
F [1,:,:,:]	$pad_w = 0$ D0 D1 D3 D4
F0 F1 F2 F3 F0 F1 F2 F3	F0 F1 F2 F3
G0 G1 G2 G3 G0 G1 G2 G3	G0 G1 G2 G3
	<i>O</i> _m

COMMUNICATION LIBRARIES NCCL, MPI

NCCL: Optimized intra-node & internode communication

Library with sophisticated topology aware collective algorithms

MPI: Library for inter-node communication

CUDA-aware MPI means you can run MPI programs using GPUs

Scalable, distributed code in a familiar environment for HPC

All-reduce: king of data parallel training

FRAMEWORKS

Cambrian explosion of AI

Need programmability

Lots of AI frameworks

Let researchers prototype rapidly

All are GPU accelerated

SIMULATION

Many important AI tasks involve agents interacting with the real world

For this, you need simulators

Physics

Appearance

Simulation has a big role to play in AI progress

NVIDIA Project Isaac: simulator for RL

DEEP NEURAL NETWORKS

Simple, powerful function approximators

$$y_j = f\left(\sum_i w_{ij} x_i\right)$$

One layer

$$f(x) = \begin{cases} 0, \ x < 0\\ x, \ x \ge 0 \end{cases}$$

nonlinearity

Deep Neural Network

TRAINING NEURAL NETWORKS

$$y_j = f\left(\sum_i w_{ij} x_i\right)$$

Computation dominated by dot products

Multiple inputs, multiple outputs, batch means it is compute bound

SCALE MATTERS

More data, more compute: More Al

General Purpose Performance

Accelerated Performance

ACCELERATED COMPUTING

Find economically important problem that needs compute

Make hardware for it to take it to speed of light

GPUs are accelerators

Al is huge focus for our GPU

TESLA V100

21B transistors 815 mm²

80 SM 5120 CUDA Cores 640 Tensor Cores

16 GB HBM2 900 GB/s HBM2 300 GB/s NVLink

*full GV100 chip contains 84 SMs

GPU PERFORMANCE COMPARISON

	P100	V100	Ratio
Training acceleration	10 TOPS	120 TOPS	12x
Inference acceleration	21 TFLOPS	120 TOPS	6x
FP64/FP32	5/10 TFLOPS	7.5/15 TFLOPS	1.5x
HBM2 Bandwidth	720 GB/s	900 GB/s	1.2x
NVLink Bandwidth	160 GB/s	300 GB/s	1.9x
L2 Cache	4 MB	6 MB	1.5x
L1 Caches	1.3 MB	10 MB	7.7x

ARITHMETIC

Mixed precision for training

Lower precision integer for inference

Int8

FP32 + FP16

TENSOR CORE

Mixed Precision Matrix Math 4x4 matrices

D = AB + C

SCALABILITY

Thesis: AI is most important problem

How can we use our best computers for it?

Current best practices use ~128 GPUs

Often people use 1-8

Research problem: how can we use 10000?

VOLTA NVLINK

300GB/sec

50% more links

28% faster signaling

HARDWARE PLATFORMS

Systems, not just GPUs

Drive PX Pegasus:

320 TOPS

For Self-Driving Cars

DGX:

960 TOPS, 8 TB SSD, 3.2 kW 128 GB HBM2, 7.2 TB/s Mem BW 512 GB DRAM, 4x EDR IB

22 📀 nvidia.

TENSOR RT Optimized Inference

Horizontal and vertical fusion

Saves memory bandwidth

Low batch-size optimizations

Inference batch sizes are small

Int8 support

Helps choose scaling factors

ACCELERATED COMPUTING FOR AI

Tremendous excitement in systems for AI Programmability & flexibility fundamental High computational intensity also required

Make human ingenuity the limiting factor for AI research & deployment Bryan Catanzaro <u>@ctnzr</u>

