Brook: An Easy and Efficient Framework for
Distributed Machine Learning

Chao Ma, Yan Ni, and Zhen Xiao*
Department of Computer Science and Technology
Peking University
{machao, niyan, xiaozhen}@net .pku.edu.cn

Abstract

We present Brook, a new framework for distributed machine learning problems.
Like some previous frameworks, Brook adopts the parameter server paradigm
that simplifies the task of distributed programming. Unlike these frameworks, we
build a novel system component called parameter agent that masks the commu-
nication details between workers and servers by mapping remote servers to local
in-memory file. In this way, Brook provides a simple and platform-independent
interface called RWW, where users can migrate existing single-machine programs,
written in any programming language, to the distributed environment with mini-
mal modification. In addition, to achieve system efficiency and scalability, Brook
is designed to minimize network traffic, maximize CPU and memory utilizations,
and support flexible fault-tolerance strategies. Our evaluation results show that
Brook has the highly competitive performance and scalability, while providing
enhanced ease of use compared to existing frameworks.

1 Introduction

Machine learning (ML) is becoming the primary mechanism to extract useful knowledge from Big
Data. To improve the accuracy, ML methods tend to use models with more parameters trained on
large numbers of examples. However, due to the computation and storage limit of a single machine,
executed in a distributed manner has become a prerequisite for solving large-scale ML problems.

The data-flow frameworks such as Hadoop [4] and Spark [2], have significantly simplified the task
of building large-scale data processing on commodity clusters. Based on these frameworks, the
distributed ML libraries such as Mahout [5] and MLI [6], have been widely used in both academia
and industry. However, most of these frameworks adopt the iterative MapReduce [1] paradigm that
mandates synchronous and coarse-grained computation and communication. This inherent system
design for batch tasks incurs great inefficiency and is often inadequate when building the “Big
Model” ML applications such as large-scale sparse logistic regression, massive topic model and
deep networks. Parameter server paradigm [7] has recently emerged as an efficient approach to
resolve the “Big Model” ML challenge. Under this paradigm, both the training data and workloads
are spread across worker nodes, while the server nodes maintain the globally shared parameters. In
contrast to the iterative MapReduce paradigm, computation and communication in parameter server
can be asynchronous and fine-grained, and hence can improve the CPU utilization and reduce the
communication cost dramatically.

The aforementioned frameworks have proven to be tremendously useful for simplifying the task of
building distributed ML applications. However, almost all of them force users to re-write their exist-
ing code in a new software stack, many of which expose an unfamiliar programming environment to

*The contact author is Zhen Xiao.

users. For example, on one hand, many ML developers are accustomed to using powerful, high pro-
ductivity array-languages such as Matlab, R and Numpy. For these users, especially inexperienced
ones, the steep learning curve of the new programming platforms, including both the programming
language and the programming model, is a major obstacle to the adoption of the new frameworks.
On the other hand, some skilled developers in ML domain prefer to use more efficient programming
languages such as C/C++, as well as the high-performance hardwares such as GPGPU to build ML
applications which can be tuned to give extremely good performance. For these users, most of the
popular frameworks, such as Spark, cannot satisfy their needs. So here comes a natural question:
can we build a new framework where users can re-use their single-machine code easily and the
framework is agnostic of the underlying programming platforms?

To answer this question, in this paper we propose Brook, a new framework which allows developers
to completely get rid of the restrictions of the programming platforms. Using Brook, developers can
migrate existing single-machine ML programs, potentially written in any programming language
or executed on the specific underlying hardwares such as GPGPU, to a distributed environment for
concurrent execution with little change, while achieving the similar fault-tolerance guarantees and
the enhanced performance compared to existing frameworks. To achieve these goals, Brook extends
the original parameter server paradigm by adding a novel component called parameter agent and its
counterparts. Section 2 explains how these components work closely together and demonstrates how
users build ML applications via the simple and language-agnostic interface RWW. Furthermore, to
achieve high performance and scalability, both computational intensive workloads and the volume
of data communication demand careful system design and optimization. In section 3, we discuss
the optimization approaches used in Brook, including the vector store, message compression, and
flexible fault-tolerance strategies. In the last section, we show a preliminary performance evaluation
of our system.

2 System Architecture

This section describes our system architecture. In our presentation, we first provide an overview
of Brook (§2.1) and then introduce the programming model based on the RWW interface (§2.2).
After that, we make a comparison between Brook and the existing solutions for the cross-language
programming in ML systems, and show the advantages of Brook (§2.3). Finally, we discuss the
implementation of our system (§2.4).

2.1 Overview

Brook’s execution environment consists of one Worker
master process and many server and worker Kernellnstance
. . . 5 — _a Server |—---mooot

processes, each executing on a potentially dif- write) Read 7
ferent machine. Figure 1 illustrates the over- {77~] P k /
all interactions among the master, servers and Read — write |V
workers when executing a Brook program. As AN

. . Worker N server
Figure 1 shows, a server node stores assigned AN

.. . . Kernel Instance \\/
parameters partition in its memory and handles i |4
the aggregation and update operations associ- parameter 1)
ated with that partition. Each worker node is R
Read Write

~
R * Server

responsible for storing a portion of the training
data to compute local updates such as gradient. |
The master node maintains the bookkeeping of Master
each worker and server process, which can be
recovered without interrupting the computation
when it crashes by non-catastrophic machine
failures. Similar to existing frameworks, we assume that the master node failures are rare and hence
provide no protection for that. Note that workers communicate only with the servers and the master,
not among themselves.

Figure 1: Brook Architecture

In Figure 1, a ML task is divided among all of the workers, which jointly learn the globally shared
parameters by computing the local updates based on its own training data. These local updates can
then be sent to servers via a specific partition algorithm in the worker nodes. Servers aggregate all

of these updates before applying them to the corresponding parameters and later send these updated
parameters back to the corresponding workers, as the response of their requests. This series of
processes is similar to that in the original parameter server.

The main difference between Brook and the original parameter server model is that the client process
in Brook dose not communicate with the server nodes directly. Instead, at run-time each worker
process derives two child processes, including the client (also called kernel instance in Brook) and
the parameter agent. Workers communicate with the servers through the parameter agent processes
and Brook combines the kernel instance and the parameter agent with the communication channel,
which is a platform-independent abstraction for local data transport and synchronization. We now
describe the details of these components in terms of the basic functions and the interactions of them.

Kernel Instance. Kernel instance is provided by the application developer and started as an inde-
pendent process that can be executed on any language platform. The effect of a kernel instance is to
repeatedly read new parameters from channel, compute local updates, and write both the updates and
the request to channel. As will be discussed later, because the parameter agent abstraction hides the
communication details, the distributed shared parameters appear to be local. This allows the kernel
instance to easily retro-fit existing single-machine implementations with minimal modification.

Parameter Agent. Parameter agent acts as a middleman between the client and the servers. Brook
makes use of the abstraction of the parameter agent to simplify the logic of the client process. The
cumbersome system work such as network communication, message queue and serialization will
be taken over by the parameter agent process. By doing so, a client process can focus only on the
implementation of the core algorithm in ML, based on any underlying programming platform, and
just read from and write to channel via the simple and language-agnostic interface to share data with
the parameter agent process.

Channel. Channel consists of a data channel which is responsible for local data transport, and a
signal channel which manages the synchronization. The concrete implementation of the channel
abstraction is file, since all programming languages can access it in a consistent way. There are two
types of files used in a channel. For the data channel, we use the in-memory file which is like a
regular file but based on Ramfs with at least two orders of magnitude improvement in performance.
For the signal channel, we use FIFO, which is easy to perform blocking I/O between two processes.

Based on the foregoing descriptions, in the next section we demonstrate how users build their dis-
tributed ML applications on Brook by using the RWW interface.

2.2 Programming model

Although ML algorithms come in many forms,

almost all of them seek a set of parameters to
a global model A that best summarizes or ex-
plains the input data 2. Such problems are usu-
ally solved by iterative-convergent algorithms,
many of which can be abstracted as the addi-
tive form: AU+t = A®) 1 A(A®)| @), where

INIT (training_data, A©®):

training_data = LoadData()
A© = nitModel()

KERNEL () :

Loop : t from 0 to max_iteration_num

updates=A (A®, training_data)

Parameter
agent
[I

i
Agent

i
Agent Agent

getSig

+

_read | | write
Data
channel

I |

i
‘ ‘ Agent ‘
) | _setSig |

)

Signal
channel
. '

: WRITE (updates, t)e----=--- .] :
A is the state of model parameters at iteration 1WR,TE(,equestyw,,,,,,,‘, ,,,,,,,,,,,, e ;IZ?(‘ cweié?r
t, 7 is the input data, and the kernel function s TR
A computes the model updates from 2. Using

: READ (A1) ®e

Brook, developers focus on the implementation
of the kernel instance, where the program will
be distributed over worker nodes and run con-
currently at run-time for computing their local
updates such as gradients. As shown in Figure 2, we see that developers can easily migrate existing
single-machine code to the Brook environment by invoking a set of functions called RWW at the
end of each iteration in a ML task. These functions include the Write, the Read and the Wait. As
we mentioned before, the RWW interface gives developers an easy and platform-independent way
to communicate with the parameter agent process. Figure 2 illustrates that, the Write and the Read
functions are responsible for local data transport by writing to and reading from data channel, while
the Wait function manages the process synchronization through the signal channel by getting and
setting the iteration timestamps (also called vector clock) during Brook’s run-time. We note that, the

Figure 2: Programming model

RWW interface could be implemented either by users or by system developers, since the protocol of
data transport and synchronism that used in this interface are extremely simple.

Several features about the RWW interface are also worth noting. First, Brook supports a number of
data types for the cross-platform data transport, such as the text data, the 3rd-party message libraries
such as protobuf and Thrift, as well as the native binary data. Second, developers can configure
the value of the maximal delay in the Wait function, which could give developers the opportunity
to implement different consistency models such as the BSP, the SSP [24] and the ASP. The core
technique under the flexible consistency model mechanism is a signal queue. Furthermore, we
support user-defined update mechanism on server nodes by using the expression template, a simple
and efficient programming language trick of C++.

2.3 Related solutions

In contrast to our system, there are two common ways of the cross-language programming that
have been used in existing ML frameworks. The first way, many ML frameworks make use of the
languages wrapper around their original API. Such as a python wrapper for the original C++ API
by using the Boost or the SWIG [9] library. In contrast to Brook, the disadvantages of this solution
are obvious. First, building the languages wrapper is not an easy job, since we have to modify the
source code of the original framework and it might be inadequate for the inexperienced users who
need to do this by themselves. A real example in the open source community is the SparkR [3],
which is published in the latest version of Spark recently. So, in other words, it is unrealistic to build
the wrappers for every programming languages which might be used by existing single-machine ML
applications. However in Brook, the RWW interface is totally language-agnostic. Apart from this,
building languages wrapper naively is often lack of both efficiency and flexibility.

The second way, that is, the Hadoop streaming [10], which is widely used as it frees programmers
from Java language, which makes developers use power of Hadoop more easily. Similar to Brook,
Hadoop streaming uses the 3rd-party medium (standard input/output) to transport data over pro-
cesses. However, as we mentioned before, the inherent system design of Hadoop is not suitable for
the ML applications in both the programing model and the system performance. In addition, Hadoop
streaming transports all of the training data through the standard IO, which can incurs great system
overhead. By contrast, using Brook, we only transport the data of parameters trough the channel.

2.4 Implementation

Brook is implemented in C++ and requires no change to the underlying OS or compiler. Our imple-
mentation re-uses a number of existing libraries such as MPICH2 for communication (supports both
the Ethernet and the InfiniBand network), Google’s protobuf for object serialization, and Snappy
for data compression. Brook can run over the cluster resource manager such as Yarn [11] or Mesos
[12], and also provides an easy way for deployment on clusters by using the docker [13] container.

3 System Optimization

Implementing an efficient and scalable distributed framework is not an easy job, because both the
volume of data communication and the intensive computational workloads demand careful system
design and optimization. In this paper, we focus on three optimization techniques:

Message compression. Since distributed machine learning problems typically require high band-
width, message compression is desirable. We use several compression approaches in our system to
reduce the network traffic as mush as possible. First, we avoid sending single items because both
the communication overhead that caused by TCP/IP package header and the serialization overhead
are horrible. Hence we pack all of the single items into a batched message form. Second, instead of
using (key, value) pair to represent each item, the message consists of a list of (start-key, value-list),
where the value-list is a sequence of consecutive values. This simple modification can greatly reduce
the size of each message especially when message tends to be dense. Next, since many ML prob-
lems may use the same training data in different iterations, we cache the key lists in the receiving
nodes. Later the senders can send only a hash value of this list rather than the list itself. Finally, we
use the Snappy compression library to compress the serialized message.

Is7 Spark (1.3.0)
10k
58.7 I Brook 0

- 27.5

50k 0.6
@ 159.5 "
N @
g :
s
o 2 o4

100k

297
0.2
200k
Failed

15:30 16:00 16:30 17:00
0 50 100 150 200 250 300 350

Running time (s) Petuum == Brook

Figure 3: Left: System performance under the BSP consistency, versus Spark (1.3.0 version, 100 it-
erations), on logistic regression. Right: Convergence rate under the SSP consistency, versus Petuum
(800-million parameters, maximal delay = 4), on large-scale sparse logistic regression. All datasets
come from the Criteo CTR [19]. We note that, the left diagram shows that, the Spark task failed
when we scale-up the mode size to 200k.

Vector store. Many previous systems use key-value table to store the globally shared state during
the run-time [23]. However, using this abstraction naively is inefficient in both the memory uti-
lization and the computation. We found that operations in server nodes are typically represented as
linear algebra computations. Hence in Brook, we use the vector store where the underlying imple-
mentation is the contiguous region of memory that stores only the consecutive values ordered by
its potential index, while the non-existing items are associated with zeros automatically. Thus, we
can save at least half of the memory cost and achieve efficiency by leveraging the high-performance
multithreaded linear algebra libraries such as the OpenBLAS [15]. It also simplifies the system de-
sign for user-defined update mechanism on the server nodes. A similar approach is also used in the
previous work [8].

Flexible level of fault-tolerance. At scale, fault-tolerance is critical. However, most of the existing
systems can only support one fixed fault-tolerance strategy, which is inflexible and often incurs much
unnecessary overhead when system is deployed in a small, well-controlled cluster. Fortunately, in
Brook, we give developers the opportunity to configure the fault-tolerance level, which could range
from LO to L3 and covers the cluster types from the small platform such as desktop PCs and lab-
clusters, to the big, less predicable platform such as large data center or the cloud. Brook will choose
the different backup strategies such as backup on remote nodes or backup locally, according to the
different fault-tolerance level.

We will demonstrate at the workshop the concrete method about the flexible fault-tolerance strate-
gies. We also plan to demo some other optimizations such as skip-list buffer, memory zero-copy and
signal queue. Each of them has improved our system performance considerably.

4 Preliminary Evaluation

We evaluated Brook on a cluster of 15 machines in our own laboratory. Each machine has a 8 cores
Intel Xeon E5620 (2.40GHz) processor with 26GB memory. We compared Brook with Spark and
Petuum under the BSP and the SSP consistency models, respectively. Our evaluation results show
that Brook can outperform its competitors in both system efficiency and scalability . The highlights
of our results can be found in Figure 3. During the workshop, we plan to demo more detailed
evaluation of our system.

5 Acknowledgments

The authors would like to thank the anonymous reviewers for their comments. This work
was supported by the National Grand Fundamental Research 973 Program of China under
Grant No.2014CB340405, and the National Natural Science Foundation of China under Grant
No.61170056 and No.61572044.

References

[1] Dean, Jeffrey, and Sanjay Ghemawat. “MapReduce: simplified data processing on large clusters.” Commu-
nications of the ACM 51.1 (2008): 107-113.

[2] Zaharia, Matei, et al. “Spark: cluster computing with working sets.” Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing. Vol. 10. 2010.

[3] Zaharia, Matei, et al. “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing.” Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 2012.

[4] White, Tom. Hadoop: The definitive guide. “ O’Reilly Media, Inc.”, 2012.

[5] Apache. Apache mahout: Scalable machine learning and data mining. http://mahout.apache.org,
October 2015.

[6] Sparks, Evan R., et al. “MLI: An API for distributed machine learning.” IEEE 13th International Conference
on Data Mining (ICDM), IEEE, 2013.

[7] Dean, Jeffrey, et al. “Large scale distributed deep networks.” Advances in Neural Information Processing
Systems. 2012.

[8] Li, Mu, et al. “Scaling distributed machine learning with the parameter server.” Proc. OSDI. 2014.

[9] Beazley, D.M. Automated scientific software scripting with SWIG. Future Gener. Comput. Syst. 19 (July
2003), 599-609.

[10] Ding, Mengwei, et al. “More convenient more overhead: the performance evaluation of Hadoop stream-
ing.” Proceedings of the 2011 ACM Symposium on Research in Applied Computation. ACM, 2011.

[11] The Apache Software Foundation. Apache hadoop nextgen mapreduce (yarn). http://hadoop.apache.org/.

[12] Hindman, Benjamin, et al. “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center.”
NSDI. Vol. 11. 2011.

[13] Docker: http://www.docker.com

[14] Eric P. Xing, Qirong Ho, et al. “Petuum: A New Platform for Distributed Machine Learning on Big Data”
SIGKDD Conference on Knowledge Discovery and Data Mining, 2015.

[15] J.J.Dongarra, J.Du Croz, S.Hammarling, and R.J.Hanson. An extended set of fortran basic linear algebra
subprograms. ACM Transactions on Mathematical Software, 14:18-32, 1988.

[16] Chien-Chin Huang, Qi Chen, Zhaoguo Wang, Russell Power, Jorge Ortiz, Jinyang Li, and Zhen Xiao.
“Spartan: A Distributed Array Framework with Smart Tiling.” Proc. of the USENIX Annual Technical Confer-
ence (ATC 2015), July 2015.

[17] Qi Chen, Jinyu Yao, and Zhen Xiao. “LIBRA: Lightweight Data Skew Mitigation in MapReduce.” IEEE
Transactions on Parallel and Distributed Systems (TPDS), September 2015.

[18] Qi Chen, Cheng Liu, and Zhen Xiao. “Improving MapReduce Performance Using Smart Speculative
Execution Strategy.” IEEE Transactions on Computers (TC), April 2014.

[19] Zhen Xiao, Qi Chen, and Haipeng Luo. “Automatic Scaling of Internet Applications for Cloud Computing
Services.” IEEE Transactions on Computers (TC), May 2014.

[20] Zhen Xiao, Weijia Song, and Qi Chen. “Dynamic Resource Allocation using Virtual Machines for Cloud
Computing Environment.” IEEE Transactions on Parallel and Distributed Systems (TPDS), June 2013.

[21] Li, Hao, et al. “MALT: distributed data-parallelism for existing ML applications.” Proceedings of the Tenth
European Conference on Computer Systems. ACM, 2015.

[22] Isard, Michael, et al. “Dryad: distributed data-parallel programs from sequential building blocks.” ACM
SIGOPS Operating Systems Review. Vol. 41. No. 3. ACM, 2007.

[23] Chilimbi, Trishul, et al. “Project adam: Building an efficient and scalable deep learning training system.”
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14). 2014.

[24] Qirong Ho, James Cipar, Eric P.Xing. “More Effective Distributed ML via a Stale Synchronous Parallel
Parameter Server.”, Neural Information Processing Systems, 2013. (NIPS 2013)

http://mahout.apache.org

	Introduction
	System Architecture
	Overview
	Programming model
	Related solutions
	Implementation

	System Optimization
	Preliminary Evaluation
	Acknowledgments

