
Sources of Variability in Large-scale
Machine Learning Systems

Damien Lefortier1,2, Anthony Truchet1, and Maarten de Rijke2
1 Criteo, Inc.

2 University of Amsterdam
{d.lefortier, a.truchet}@criteo.com, derijke@uva.nl

Abstract

We investigate sources of variability of a state-of-the-art distributed machine learning
system for learning click and conversion prediction models for display advertising. We
focus on three main sources of variability: asynchronous updates in the learning algo-
rithm, downsampling of the data, and the non-deterministic order of examples received
by each learning instance. We observe that some sources of variability can lead to sig-
nificant differences between the models obtained and cause issues for, e.g., regression
testing, debugging, and offline evaluation. We present effective solutions to stabilize the
system and remove these sources of variability, thus fully solving the issues related to
regression testing and to debugging. Moreover, we discuss potential limitations of this
stabilization for drawing conclusions, in which case we may want to take the variability
produced by the machine learning system into account in confidence intervals.

1 Introduction

Machine learning (ML) is being used at a broad range of technology companies, for solving challenging
tasks such as, e.g., recommendation of content or products [1], click prediction for display advertising
[2, 3], and for optimizing search engines [4]. Increasingly, machine learning is being used on very large
datasets [5]. To learn models for predicting clicks or conversions at Criteo, we rely on a large amount
of historical data [6, 7], but we also need to frequently refresh our models to learn from the latest data
and maximize performance [3]. Below, we first describe our Hadoop-based terascale implementation of
stochastic gradient descent (SGD) for sparse problems, a widely used algorithm for large-scale machine
learning [8, 9], and of limited-memory BFGS [10] (L-BFGS), which we use sequentially for learning
our models [6]. Our implementation of SGD extends HOGWILD! style SGD [11] and combines it with
Hadoop AllReduce to provide distribution through parameter averaging. We use AllReduce for distribut-
ing L-BFGS through gradient aggregation [12].

We focus on the following questions. What are the sources of variability in our system? To which extent
do they impact its performance, and if the impact is significant, how should we deal with it? Large-
scale ML is often asynchronous in order to learn from very large datasets in a reasonable amount of time
[11, 13, 14]: a first source of variability is due to asynchronous updates at the learning-level [15]. A
second source arises at the system-level and comes from the fact that a state-of-the-art distributed ML

1



system typically does not ensure that the samples (or simply their ordering) processed by each machine
remains the same from one run to another; this can even impact the model learned by synchronous systems
that use SGD [12, 6].

Variability is a real concern for large-scale ML. First, the system is less reproducible, which makes engi-
neering aspects such as regression testing or debugging even more challenging than usual. Indeed, when,
for example, moving the learning system used in production to a new cluster, it is critical (to say the least)
to be able to ensure that the system still behaves as before (as many things could go wrong when during
such a migration that could lead to small changes in the models learned). But if the system is not exactly
reproducible, then it is very challenging to move fast and with confidence in such cases. Variability is crit-
ical to large-scale machine learning systems as even small degradations in the machine learning code can
lead to slightly less efficient models but large financial losses. Finally, variability also makes it harder to
draw conclusions when doing offline experiments (does this feature bring an improvement beyond model
and metric noise?). As one is typically looking for small increments of a few percentage points [3, 16],
variability is a real concern when improving the models, especially for large-scale ML systems as they
increase with the size of the dataset (and are insignificant on a small dataset).

Below, we show that the median relative difference of normalized log loss [3] across all sources of variabil-
ity can reach 0.066%, which is significant considering that the model we use for running our experiment
(a click prediction model) is only one of the models we use for predicting the value of a display opportu-
nity.1 We present effective solutions to stabilize the system and remove these sources of variability, thus
fully solving the issues related to regression testing and to debugging. Moreover, we discuss potential
limitations of this stabilization for drawing conclusions, in which case we may want to take the variability
produced by the machine learning system into account in confidence intervals.

2 Large-scale machine learning with SGD and L-BFGS

We consider an effective terascale learning system using stochastic gradient descent (SGD) [8, 9] followed
by limited-memory BFGS (L-BFGS) [6]. We refer to [12] for details and only briefly present a case study
of our implementation of SGD for large-scale machine learning on Hadoop, both multi-threaded and
distributed (not detailed in [12]). We consider a version of SGD well adapted to sparse problems, where
most features are not present for any given example thus making the input dataset sparse, and which are
quite common [17, 9]. Indeed, as an example, in [17] tens of or hundreds of active (present) features per
example are reported on average, but 100 billion unique features overall are typical use cases for Sibyl at
Google. The recent click log data set open sourced by Criteo [7] is also highly sparse with millions of
unique features and only hundreds of active features per examples.

Using a regularization term on sparse data makes the update dense, i.e., all weights are updated for each
example, which prevents SGD from fully benefiting from the sparsity — thus making the learning much
slower with than without the regularization term. A well-known trick to solve this issue is to do the
updates related to the regularization term in a lazy fashion. That is when need, so for active weights only
(taking in account the number of updates missed), thus making the update fully sparse [9]; see below.
Another well-known trick that builds upon the sparsity is to use HOGWILD!, i.e., lock-free multi-threaded
SGD, to speed up the learning [11]. Here, we combine these two approaches on each machine and obtain
Algorithm 1, where the wi are our set of parameters to fit, η is the learning rate, gi is the gradient of the
loss w.r.t. wi and λ is the regularization parameter. We use L2 regularization for simplicity and without
loss of generality.

1As we predict the expected sales amount generated by a user following a display using different sub-models,
these variabilities will add up across all models (see Section 3).

2



Algorithm 1 Lock-free lazy SGD algorithm with L2 regularization running on each machine

1: nbUpdates = 0 . Number of data points updates so far
2: lastTimeUpdated = {0} . Array initialized with zeroes
3: for each epoch do
4: parallel for each data point e do
5: for each active weight wi of e do
6: wi = wi − η(gi + λwi ∗ (nbUpdates− lastTimeUpdated[wi]))
7: lastTimeUpdated[wi] = nbUpdates
8: end for
9: atomicIncrement(nbUpdates)

10: end parallel for
11: end for

This algorithm can then be distributed over multiple machines [13, 14].2 Here, we distribute this algorithm
using synchronous parameter averaging [18] using Hadoop AllReduce, because it scales well up to the
terascale [12, 6] and is easy to implement. We also use AllReduce for distributing L-BFGS through
gradient aggregation as usually done [12, 6]. More specifically, our implementation has two stages: a
mapper step for pre-processing the data (for sampling examples or applying feature transforms) and a
reducer step for learning using SGD and L-BFGS, which uses Hadoop AllReduce for synchronization
between machines.

3 Sources of variability

In this section, we investigate three sources of variability of the system described in Section 2 and how
they impact the model obtained. In all our experiments, we use internal data from the production click
logs at Criteo from September 2015. We consider a data set of 2.6 billion examples with binary labels
(click vs. no-click) and hundreds of millions of unique attribute values. To quantify these sources of
variability, we use a click prediction model trained using logistic regression with our system.

We use the Normalized Log Loss (NLL) as our offline metric (defined formally below), which shows the
relative improvement in Log Loss of the model to be evaluated versus a baseline predictor, in our case
the average empirical click-through rate (CTR) of the dataset. We denote yi the binary outcome variable
indicating if there was a click or not and pi the estimated probability of click. This metric was also used
in [3] where they call it the Relative Information Gain (RIG). For each source of variability, we report
the median relative difference of this normalized log loss3 computed on the test set over 15 runs of our
system. Each run takes a few hours to complete and we therefore limit ourselves to 15 runs per source of
variability in our experiments below.

Log Loss (LL) − 1

N

∑
i

(yi log(pi) + (1− yi) log(1− pi))

Normalized Log Loss (NLL) 1− LLModel

LLAverageEmpiricalCTR

All experiments are run using 40 reducer instances for distributing the learning and using L-BFGS, ini-
tialized with SGD, until the optimizer makes little progress. We use the hashing trick [19] to reduce the

2See this blog post by John Langford for details: http://hunch.net/?p=151364.
3This is the median difference between all pairs of runs w.r.t. the mean normalized log loss.

3

http://hunch.net/?p=151364


dimensionality of our dataset and to thus reduce the number of parameters to fit from hundreds of millions
as indicated above to millions.

Variability from asynchronous updates Algorithm 1 relies on asynchronous updates, which provide
a significant speed-up in terms of learning time without significantly degrading the model [11] and are
therefore highly beneficial. However, they lead to non-deterministic overwrites, which introduce some
variability in the learned model. The median relative difference of NLL for this source of variability
reaches 0.048% and 0.052% when training our model on 602M and 2.6B examples, respectively (Table 1,
first line of results). We can use one thread to fully remove this variability. One can also get rid of this
source of variability by using a synchronous distributed variant of SGD [15], although this would mean
a different architecture for our system. We could use L-BFGS only, but it would have to be warm started
in another way than with SGD, as L-BFGS is very slow to converge far away from the optimum [12]. All
experiments, except those for the first line (of results) have been run with one thread.

Variability from sampling the data In many applications of large-scale machine learning, there is a
fundamental class imbalance in the dataset, e.g., in our context, around 200 displayed ads for 1 click.
Down-sampling of the dominant class(es) is typically used to solve this problem and ease learning [3].
In this case, the effective dataset received by the learning machines after down-sampling is an arbitrary,
implementation-dependent, subset of the dataset. This introduces a fundamental variability in the models
learned by the system. In our experiments, we down-sample a large portion of the negative (non-clicked)
examples. We use a deterministic sampling scheme: for each example, some unique features (e.g., a
display ID) are hashed with a salt. This allows us to specifically quantify the variability introduced here
by training a model multiple times with different salts. Table 1 shows that the median relative difference
of NLL for this source of variability reaches 0.030% and 0.053% when training our model on 602M and
2.6B examples, respectively (third result line in Table 1), which is about the same as with asynchronous
updates. Fixing the salt allows us to remove this source of variability, which is instrumental for any
reliable regression testing or for quantifying other sources of variability. All experiments, except those
for the third result line have been run with the same salt.

Variability from the shuffling of the input At the system-level, the very large datasets we use require
distributed storage and learning. We use Hadoop MapReduce, but the following side-effects are gener-
alizable to other distribution frameworks. The mapper instances load and merge the input log files from
one of their (HDFS) replicas in a non-deterministic and not controllable way. Then, the log lines are
shuffled between mapper and reducer instances according to some shuffling key. A default strategy to
even the load between reducer instances is to interleave data from all mapper instances to each reducer.
This makes both the partitioning of the log lines between the reducer instances and the order in which
they are seen by each reducer highly variable. Our system is sensitive to this source of variability with a
median relative difference of NLL for this source of variability of 0.049% and 0.056% when training our
model on 602M and 2.6B examples, respectively (Table 1, second result line), which is very similar to
the results obtained for the two sources of variability above. Note that, as with the two previous sources
of variability, the median relative difference of NLL increases slightly with the dataset size. We address
this source of variability by using a deterministic shuffling scheme: we build the shuffling key for each
log line using some unique features. This ensures that, for a given number of reducer instances, and a
sampling salt (see above), one reducer will always receive the same effective data in the same order. All
experiments except those for the second row of Table 1 use this setup.

Addressing variability Table 1 (fourth result line) shows that, combined, our solutions, as described
above, allow us to stabilize the learning system; we do not observe any variability after the proposed
changes. In other experiments using the full model (optimizing the expected sales amount generated by
a user following a display) [16], we observe that the median relative difference of Utility [20] on the full

4



Source of variability Median relative difference of NLL
Number of examples 602M 2.6B
Variability from async. updates (12 threads) 0.048 % 0.052 %
Variability from shuffling 0.049 % 0.056 %
Variability from sampling 0.030 % 0.053 %
Variability cumulated from all sources 0.058 % 0.066 %
Variability with all proposed changes ε ε

Table 1: Impact of the different sources of variability: median relative difference of the normalized log
loss (NLL) obtained on the test set (of 103M examples) between 15 runs of our system, where ε < 10−9

is an insignificant value.

model can reach large values (closer to 1%) across all variabilities before our proposed changes [16]. Our
changes allow us to completely stabilize the full model as well. (These experiments are omitted due to
space constraints.)

4 Conclusion

We investigated three sources of variability of a state-of-the-art large scale ML system related to concur-
rency, down-sampling and shuffling.

We observed that all sources of variability yield roughly similar median differences of NLL according to
our experiments (≈ 0.05%). The first source of variability takes its root in a trade-off between efficiency
and determinism of concurrent execution. The second one is fundamental: it can only be arbitrarily
frozen. For the third source, which is accidental to the distribution framework used, we proposed a
specific solution. We showed that, together, our solutions fully stabilize the system, thus solving the
issues related to regression testing and debugging.

While the proposed solution for the accidental variability caused by shuffling is effective, the freezing of
the fundamental variability caused by down-sampling merely hides this variability. However, by hiding
fundamental sources of variability, we may become over-confident in our offline experiments and we may
therefore want to take into account the variability produced by the ML system in our confidence intervals.
The formalization of this process is left as future work.

Acknowledgments We would like to thank our colleagues Olivier Koch, Etienne Sanson, and Loic Le
Bel for their useful comments on early versions of this paper.

References

[1] R. M. Bell and Y. Koren, “Lessons from the netflix prize challenge,” ACM SIGKDD Explorations
Newsletter, vol. 9, no. 2, pp. 75–79, 2007.

[2] C. Li, Y. Lu, Q. Mei, D. Wang, and S. Pandey, “Click-through prediction for advertising in twitter
timeline,” in KDD ’15, pp. 1959–1968, ACM, 2015.

[3] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, et al.,
“Practical lessons from predicting clicks on ads at facebook,” in KDD ’14, pp. 1–9, ACM, 2014.

[4] T. Joachims, “Optimizing search engines using clickthrough data,” in KDD ’02, pp. 133–142, ACM,
2002.

5



[5] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive Datasets. Cambridge University
Press, 2014.

[6] O. Chapelle, E. Manavoglu, and R. Rosales, “Simple and scalable response prediction for display
advertising,” ACM Trans. Int. Systems and Technology, vol. 5, no. 4, p. 61, 2014.

[7] “Criteo Releases Industry’s Largest-Ever Dataset for Machine Learn-
ing.” http://www.criteo.com/news/press-releases/2015/06/
criteo-releases-industrys-largest-ever-dataset/, 2015.

[8] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in COMPSTAT ’10,
pp. 177–186, Springer, 2010.

[9] J. Lin and A. Kolcz, “Large-scale machine learning at twitter,” in SIGMOD ’12, pp. 793–804, ACM,
2012.

[10] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale optimization,” Math-
ematical programming, vol. 45, no. 1-3, pp. 503–528, 1989.

[11] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to parallelizing stochastic
gradient descent,” in NIPS ’11, pp. 693–701, 2011.

[12] A. Agarwal, O. Chapelle, M. Dudı́k, and J. Langford, “A reliable effective terascale linear learning
system,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1111–1133, 2014.

[13] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola, “Parameter server for
distributed machine learning,” in Big Learning NIPS Workshop, 2013.

[14] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang, Q. V.
Le, et al., “Large scale distributed deep networks,” in NIPS ’12, pp. 1223–1231, 2012.

[15] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient descent and its application to
data-parallel distributed training of speech dnns,” in Interspeech ’14, 2014.

[16] F. Vasile and D. Lefortier, “Cost-sensitive learning for bidding in online advertising auctions,” in
Machine Learning for eCommerce (NIPS 2015 Workshop), 2015.

[17] T. Chandra, E. Ie, K. Goldman, T. L. Llinares, J. McFadden, F. Pereira, J. Redstone, T. Shaked, and
Y. Singer, “Sibyl: a system for large scale machine learning,” in DSN ’14, 2014.

[18] R. McDonald, K. Hall, and G. Mann, “Distributed training strategies for the structured perceptron,”
in Human Language Technologies: The 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics, pp. 456–464, Association for Computational Lin-
guistics, 2010.

[19] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg, “Feature hashing for large
scale multitask learning,” in Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 1113–1120, ACM, 2009.

[20] O. Chapelle, “Offline evaluation of response prediction in online advertising auctions,” in Proceed-
ings of the 24th International Conference on World Wide Web Companion, pp. 919–922, Interna-
tional World Wide Web Conferences Steering Committee, 2015.

6

http://www.criteo.com/news/press-releases/2015/06/criteo-releases-industrys-largest-ever-dataset/
http://www.criteo.com/news/press-releases/2015/06/criteo-releases-industrys-largest-ever-dataset/

	Introduction
	Large-scale machine learning with SGD and L-BFGS
	Sources of variability
	Conclusion

