
MALT: Distributed Data-Parallelism for Existing ML
Applications

Hao Li∗, Asim Kadav, Erik Kruus
NEC Laboratories America
{asim, kruus@nec-labs.com}

Abstract

We introduce MALT, a machine learning library that integrates with existing ma-
chine learning software and provides peer-to-peer data parallel machine learning.
MALT provides abstractions for fine-grained in-memory updates using one-sided
RDMA, limiting data movement costs during incremental model updates. MALT
allows machine learning developers to specify the dataflow and apply communica-
tion and representation optimizations. In our results, we find that MALT provides
fault tolerance, network efficiency and speedup to SVM, matrix factorization and
neural networks.

1 Introduction

Existing map-reduce frameworks have proven to be tremendously useful and popular paradigm for
large-scale batch computations. However, these frameworks can be a poor fit for long running ML
tasks. ML algorithms such as gradient descent are iterative, and make multiple iterations to refine
the output before converging to an acceptable value. ML tasks have the following properties:

• Fine-grained and Incremental: ML tasks perform repeated model updates over new input
data. Most existing processing frameworks lack abstractions to perform iterative compu-
tations over small modifications efficiently. This is because in existing map-reduce imple-
mentations, jobs synchronize using the file-system [8] or maintain in-memory copies of
intermediate data [15]. For computations with large number of iterations and small modi-
fications, these techniques can be sub-optimal.

• Asynchronous and Approximate: ML tasks that run in parallel may communicate asyn-
chronously. As an example, models that train in parallel may synchronize model parameters
asynchronously. Enforcing determinism in the order of parameter updates can cause unnec-
essary performance overhead. Furthermore, ML tasks may perform computation stochasti-
cally and often an approximation of the trained model is sufficient.

To address these properties, we propose a system called MALT (stands for distributed Machine
Learning Toolset), that runs existing ML software over a cluster [11]. MALT provides an efficient
shared memory abstraction that runs existing ML software in parallel and allows them to commu-
nicate updates periodically. MALT exports a scatter-gather API, that allows pushing model
parameters or model parameter updates (gradients) to parallel model replicas. These replicas then
process the received values by invoking a user-supplied gather function locally. MALT com-
munication is designed using one-sided RDMA writes (no reads for faster round-trip times [10])
and provides abstractions for asynchronous model training. Furthermore, MALT abstracts RDMA
programming, and deals with system issues like recovering from unresponsive or failed nodes.

∗Work done as a NEC Labs intern; now at U. Maryland

1

vector object library

dstorm (distributed one-sided remote memory)

HDFS/NFS (for loading training data)

SGD using
V1 as primary
model param

V1 V2 Vn

SGD using
V2 as primary
model param

SGD using
Vn as primary
model param

V1 V2 Vn V1 V2 Vn

Replica 1 Replica 2 Replica n

Figure 1: MALT architecture. Existing applications run with modified gradient descent algorithms that
receive model update (V) from replicas training on different data. Model vectors are created using a
Vector Object Library that allows creation of shared objects. Each replica scatters its model update
after every (or every few) iteration and gathers all received updates before the next iteration.

Our data-parallel, peer-to-peer model communication complements the master-slave style parame-
ter server approach [6, 7, 12]. In MALT, parallel model replicas send model updates to one-another
instead of a central parameter server. This reduces network costs because the machines only commu-
nicate model updates back and forth instead of full models. Furthermore, implementing MALT, does
not require writing separate master/slave code or dealing with complex recovery protocols to deal
with master failures. We demonstrate that MALT can be used to gain speedup over a single machine
for small datasets and train models over large datasets that span multiple machines efficiently.

2 MALT Design

In MALT, model replicas train in parallel on different cores across different nodes using existing
ML libraries. ML libraries use the MALT vector library to create model parameters or gradients that
need to be synchronized across machines. These vectors communicate over MALT’s shared memory
abstraction over infiniBand. Furthermore, MALT loads data in model-replicas from a distributed file-
system such as NFS or HDFS. Each machines reads a portion of randomized data. This requirement
may be relaxed with learning algorithms that can train over non-random data [14].

Abstractions for Shared Memory with dstorm MALT’s design provides efficient mechanisms
to transmit model updates. There has been a recent trend of wide availability for cheap and fast
infiniBand hardware and they are being explored for applications beyond HPC environments [9, 13].
RDMA over infiniBand allows low latency networking of the order of 1–3 micro-seconds by using
user-space networking libraries and by re-implementing a portion of the network stack in hardware.
Furthermore, the RDMA protocol does not interrupt the remote host CPU while accessing remote
memory. Finally, writes are faster than reads since they incur lower round-trip times [10] and MALT
exclusively uses writes to implement its shared memory architecture.

We build dstorm (dstorm stands for DiSTributed One-sided Remote Memory) to facilitate efficient
shared memory for ML workloads. In MALT, every machine can create shared memory abstractions
called segments via a dstorm object. Each dstorm segment is created by supplying the object size
and a directed gradient flow graph. To facilitate one-sided writes, when a dstorm segment is created,
the nodes in the dataflow synchronously create dstorm segments. dstorm registers a portion of
memory on every node with the infiniBand interface to facilitate one-sided RDMA operations. When
a dstorm segment is transmitted by the sender, it appears at all its receivers (as described by the
dataflow), without interrupting any of the receiver’s CPU. We call this operation as scatter. Hence,
a dstorm segment allocates space (a receive queue) in multiples of the object size, for every sender
in every machine to facilitate the scatter operation. We use per-sender receive queues to avoid

2

Data

Data

Data

Data

Data

Data

Node%1%

Node%2%

Node%3%

Node%4%

Node%5%

Node%6%

Model%Parameter%5%

Model%Parameter%6%

Model%Parameter%4%

Model%Parameter%3%

Model%Parameter%2%

Model%Parameter%1%

Data

Data

Data

Data

Data

Data

Node%1%

Node%2%

Node%3%

Node%4%

Node%5%

Node%6%

Model%Parameter%6%

Model%Parameter%5%

Model%Parameter%4%

Model%Parameter%3%

Model%Parameter%2%

Model%Parameter%1%

Figure 2: P2P communication protocols: All-all (left): As the number of nodes (N) grow, the total
number of updates transmitted increases O(N2). Halton-sequence exchange of model updates for N = 6
(Right). Each ith machine sends updates to log(N) (2 for N = 6) nodes (to N/2 + i and N/4 + i). As
number of nodes(N) grow, total number of updates transmitted increases O(N logN).
invoking the receiver CPU for resolving any write-write conflicts arising from multiple incoming
model updates from different senders. Hence, our design uses extra space with the per-sender receive
queues to facilitate lockless model propagation using one-sided RDMA. Both these mechanisms, the
one sided RDMA and per-sender receive queues ensure that the scatter operation does not invoke
the receive-side CPUs and each machine can compute gradients asynchronously.

Once the received objects arrive in local per-sender receive queues, they can be read with a local
gather operation. The gather function uses a user-defined function (UDF), such as an average, to
collect the incoming updates. We also use queues on the sender side, allowing senders to perform
writes asynchronously. Finally, we build a vector library over dstorm to expose a vector abstraction
over shared memory and to provide additional communication or representation optimizations (such
as compression).

Communication Efficiency in MALT : When MALT is trained using the peer-to-peer approach,
each machine can send its update to all the other machines to ensure that each model receives the
most recent updates. We refer to this configuration as MALTall. As the number of nodes (N)
increases, the gradient communication overhead in MALTall increases O(N2) times, in a naı̈ve
all-reduce implementation. Efficient all-reduce primitives such as the butterfly [5] or tree style all-
reduce [3] may reduce the communication cost. However, this increases the latency by a factor of the
height of the tree. Furthermore, this makes recovery complex if the intermediate nodes are affected
by stragglers or failures.

In MALT, we propose indirect propagation of model updates. A developer may use the MALT
API to send model updates to either all N nodes or fewer nodes k, (1 ≤ k ≤ N). MALT facili-
tates choosing a value k such that a MALT replica (i) disseminates the updates across all the nodes
eventually; (ii) optimizes specific goals of the system such as freshness, and balanced communica-
tion/computation ratio in the cluster. By eventually, we mean that the developer needs to ensure that
the communication graph of all nodes is strongly connected. Naı̈vely or randomly selecting what
nodes to send updates to may either result in a partitioned graph of nodes or may propagate updates
that may be too stale. This can adversely affect the convergence in parallel learning models.

In MALT we provide a pre-set sequence to ensure uniform gradient propagation. For every node,
that propagates its updates to k nodes (k < N), we pick the k node IDs based on a uniform random
sequence such as the Halton sequence [1] that generates successive points that create a k-node graph
with good information dispersal properties. We further propose that each node only send updates
to log(N) nodes and maintain a log(N) sized node list. Hence, if we mark the individual nodes
in training cluster as 1, ..., N , Node 1 sends its updates to N/2, N/4, 3N/4, N/8, 3N/8, 5N/8, ...
and so on (the Halton sequence with base 2). Hence, in this scheme, the total updates sent in every
iteration is only O(N logN). We refer to this configuration as MALTHalton. Figures 2 shows the
all-to-all and Halton communication schemes.

3

100 101 102

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

iterations (10000)

RCV1, all, BSP, gradavg, ranks=10

lo
ss

goal 0.145
single rank SGD
cb=5000 7.3X

100 101 102

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

time (0.01 sec)

RCV1, all, BSP, gradavg, ranks=10

lo
ss

goal 0.145
single rank SGD
cb=5000 6.7X

0 50 100 150 200 250

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

time (1 sec)

Splice−site, modelavg, cb=5000, ranks=8

lo
ss

goal 0.01245
BSP all
ASYNC all 6X
ASYNC Halton 11X

(a) (b)

Figure 3: This figure shows convergence for RCV1 workload for MALTall with a single machine work-
load. We find that MALTall converges quicker to achieve the desired accuracy.
Using MALT’s network-efficient parallel model training results in faster model training times. This
happens because 1) The amount of data transmitted is reduced. 2) The amount of time to compute
average of gradients is reduced since the gradient is received from fewer nodes. 3) In a synchronized
implementation, this design reduces the number of incoming updates that each node needs to wait
for, before going on to the next iteration. The key idea with MALTHalton is to balance the com-
munication (sending updates) with computation (computing gradients, applying received gradients).
However, the node-graph needs to be strongly connected otherwise the individual model updates
from a node may not propagate to remaining nodes, and the models may diverge from one another.

3 Evaluation

We use MALT to modify SVM-SGD, Hogwild (matrix factorization) and RAPID (neural networks).
We perform all experiments on 8 machine cluster. Each machine has an Intel Xeon 2.2Ghz CPU
and 64 GB DDR3 DRAM, connected to one another via a Mellanox Connect-V3 56 Gbps infini-
Band. To evaluate SVM, we use RCV1, the PASCAL suite (alpha, webspam, DNA) and splice-site
datasets [2]. The compressed training set sizes are RCV1 – 333 MB (477 MB uncompressed), and
splice-site – 110 GB (250 GB uncompressed). Please refer to [11] for detailed results on SVM-
PASCAL, matrix factorization and neural networks and additional evaluation for developer efforts,
and performance of different consistency protocols.

Speedup In this section, we compare the speedup of different datasets over a single machine and
existing methods. We compare speedup of the systems under test by running them until they reach
the same loss value and compare the total time and number of iterations over data per machine.
For each of our experiments, we pick the desired final optimization goal as achieved by running a
single-rank SGD [4]. Figure 3 (a) compares the speedup of MALTall for 10 ranks with a single-rank
SGD for the RCV1 dataset, for a communication batch size or cb size of 5000. By cb size of 5000,
we mean that every model processes 5000 examples and then propagates the model updates to other
machines. By 10 ranks, we mean 10 processes, that span our eight machine cluster. For RCV1, we
are unable to saturate the network and CPU with a single replica, and run multiple replicas on each
machine. We obtain about 6.7X speedup over a single rank performance using MALT.

Network Optimizations Figure 3 (b) shows the model convergence for the splice-site dataset and
the speedup over (Bulk Synchronous Parallelism) BSP-all in reaching the desired goal with 8 nodes.
From the figure, we see that MALTHalton converges faster than MALTall. Furthermore, we find that
until convergence, each node in MALTall sends out 370 GB of updates, while MALTHalton only
sends 34 GB of data for each machine. As the number of nodes increase, the logarithmic fan-out
of MALTHalton should result in lower amounts of data sent and faster convergence. MALT Halton
trades-off freshness of updates at peer replicas with savings in network communication time. For
workloads where the model is dense and network communication costs are small compared to the
update costs, MALTall configuration may provide similar or better results over MALT Halton.

Fault Tolerance We evaluate the time required for convergence when a node fails. When the
MALT fault monitor in a specific node receives a time-out from a failed node, it removes that

4

50

400

0

50

100

150

200

250

300

350

Runtime configurations

T
im

e
to

p
ro

ce
ss

 5
0

 e
p
oc

hs fault-free
1-node failure

Figure 4: This figure shows the time taken to converge for DNA dataset with 10 nodes in fault-free and
a single process failure case. We find that MALT is able to recover from the failure and train the model.

node from send/receive lists. We run MALT-SVM over ten ranks on eight nodes to train over the
PASCAL-DNA [2] dataset. We inject faults on MALT jobs on one of the machines and observe
recovery and subsequent convergence. We inject the faults through an external script and also inject
programmer errors such as divide by zero.

We find that in each case, MALT fault monitors detected the unreachable failed mode, triggered a
recovery process to synchronize with the remaining nodes and continued to train. We also observe
that subsequent group operations only execute on the surviving nodes. Finally, we verify that the
models converge to an acceptable accuracy. We also find that local fault monitors were able to trap
processor exceptions and terminate the local training replica. We note that MALT cannot detect
corruption of scalar values or Byzantine failures. Figure 4 shows one instance of failure recovery,
and the time to converge is proportional to the number of remaining nodes.

4 Lessons and Conclusions

To summarize, given a list of machines and MALT library, we demonstrate that one can parallelize
ML algorithms, control the gradient-flow and synchrony. We briefly discuss lessons on deploying
MALT on our clusters:

Cross-rack reduce: When performing a reduce operation across racks, an all-reduce primitive can
be extremely slow. We find that using partial reduce with MALTHalton, that is aware of the underlying
rack topolgy can reduce these wait times.

Consistency: Synchronous training is implemented using the barrier construct where workers
may spend considerable time waiting. Furthermore, barrier gives no information if the recipient
has seen or processed the gradient. barrier is also inefficient for partial reduce (MALT Halton).
For these reasons, we provide the notify-ack mechanism, where each receiver acknowledges
processing a gradient to the receivers. This gives stricter guarantees than barrier and can improve
performance in some cases.

Data Loading: We find that loading data into memory consumes a significant portion of job times.
For training tasks with significant CPU times, such as processing image data through deep networks,
having a separate data loader that loads and sends data to various workers over infiniBand can be
helpful. This allows overlapping data loading with model training, and removes the initial data load
wait times.

RDMA support: MALT uses one-sided RDMA primitives that reduces network processing costs
and transmission overhead using hardware support. The new generation of RDMA protocols pro-
vide additional opportunities for optimizations. Primitives such as fetch and add can be used to
perform gradient averaging in hardware and further decrease the model training costs in software.

5

References
[1] Halton sequence. en.wikipedia.org/wiki/Halton sequence.

[2] PASCAL Large Scale Learning Challenge. http://largescale.ml.tu-berlin.de, 2009.

[3] A. Agarwal, O. Chapelle, M. Dudı́k, and J. Langford. A reliable effective terascale linear learning system.
JMLR, 2014.

[4] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Springer COMPSTAT, 2010.

[5] J. Canny and H. Zhao. Butterfly mixing: Accelerating incremental-update algorithms on clusters. In
SDM, 2013.

[6] W. Dai, J. Wei, X. Zheng, J. K. Kim, S. Lee, J. Yin, Q. Ho, and E. P. Xing. Petuum: A framework for
iterative-convergent distributed ml. arXiv preprint arXiv:1312.7651, 2013.

[7] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior,
P. A. Tucker, et al. Large scale distributed deep networks. In NIPS, 2012.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[9] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro. Farm: fast remote memory. In USENIX NSDI,
2014.

[10] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA efficiently for key-value services. In SIG-
COMM. ACM, 2014.

[11] H. Li, A. Kadav, E. Kruus, and C. Ungureanu. MALT: Distributed Data-Parallelism for Existing ML
Applications. In Proceedings of the 10th European conference on Computer systems. ACM, 2015.

[12] M. Li, D. Andersen, A. Smola, J. Park, A. Ahmed, V. Josifovski, J. Long, E. Shekita, and B.-Y. Su.
Scaling distributed machine learning with the parameter server. In USENIX OSDI, 2014.

[13] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma reads to build a fast, cpu-efficient key-value store.
In USENIX ATC, 2013.

[14] C. Mu, A. Kadav, E. Kruus, D. Goldfarb, and M. R. Min. Random Walk Distributed Dual Averaging
Method For Decentralized Consensus Optimization. In Proceedings of the NIPS Optimization Workshop,
2015.

[15] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In
USENIX NSDI, 2012.

6

http://leon.bottou.org/papers/bottou-2010

	Introduction
	MALT Design
	Evaluation
	Lessons and Conclusions

