
Sparkling Vector Machines

Tu Dinh Nguyen†, Vu Nguyen†, Trung Le‡, Dinh Phung†
tu.nguyen@deakin.edu.au, v.nguyen@deakin.edu.au
trunglm@hcmup.edu.vn, dinh.phung@deakin.edu.au

†Center for Pattern Recognition and Data Analytics
School of Information Technology, Deakin University, Geelong, Australia

‡Faculty of Information Technology,
HCMc University of Pedagogy, Ho Chi Minh city, Vietnam

Abstract

Support vector machines (SVMs) are widely-used for classification task in liter-
ature. A data augmentation algorithm is proposed to improve the learning of the
machinery. Distributed SVMs are well-studied, but the distributed implementation
for SVM with data augmentation has not been explored. This paper introduces
a distributed version called sparkling vector machine which is implemented in
Apache Spark, a recent advanced platform for distributed computing. We demon-
strate the scalability of our proposed method on large-scale datasets with hundreds
of million data points. The experimental results show that the predictive perfor-
mances of our method are better than or comparable with those of baselines whilst
the execution time is orders of magnitude lower.

1 Introduction

Support vector machines (SVMs) [1] are widely-used machine learning methods for classification.
The methods can also apply on big data for large-scale linear classification [2]. A data augmentation
algorithm is integrated into the machinery to increase the mixing rate and improve the computation
complexity using the formulation in terms of complete data sufficient statistics [3]. More impor-
tantly, this augmentation scheme allows us to examine the SVM under Bayesian settings. Most of
the SVM-based implementations are running on a single machine. However, the ever growing col-
lection of data nowadays is far beyond the capacity of a single machine. Therefore, there is a need
for frameworks that support parallel and distributed data processing on multiple machines.

A new emerging class of such frameworks is Apache Spark [4]. Spark is a cluster computing plat-
form that supports distributed computing, scalability and fault tolerance. Compared with MapRe-
duce [5], a well-known disk-based distributed framework, Spark provides an in-memory processing
solution which bypasses the heavy disk I/O bottleneck of reloading the data when performing iter-
ative machine learning methods. In addition, the platform also supports high-level APIs which are
more friendly for developers, and especially supplies REPL (real-evaluate-print-loop) environment
for data scientists.

In this paper, we extend the data augmentation framework of SVMs to support multiclass classifica-
tion, and introduce a distributed model that parallelizes the maximum a posterior (MAP) estimation
of such framework. We conduct experiments on large-scale datasets to demonstrate the capacity
of the proposed method. The results show that our method obtains a significant speedup in train-
ing phrase, compared with the existing baselines implemented in Spark, and is substantially faster
than its Matlab implementation. At the same time, the classification performances are better than or
comparable with those of the baselines. We term the resulting model the sparkling vector machine
(SkVM).

1

In short, our main contributions are: (i) the extension of a powerful data augmentation technique
for SVMs to multiclass setting; (ii) the derivation of SkVM, a distributed method that parallelizes
the MAP estimation of such augmentation approach; (iii) an implementation of our proposed model
in the recent advanced distributed system – Apache Spark; and (iv) a significant evaluation the
capability and scalability of SkVM on large-scale datasets with hundreds of million data points.

2 Sparkling Vector Machines

In this section, we first provide a brief review on how to integrate the data augmentation technique
into SVMs. We then describe our extension to perform multiclass classification task. Furthermore,
we present our parallelization procedure for such approach to construct our distributed framework.

2.1 Latent variable models for SVMs

The SVM aims to find an optimal hyperplane that maximizes the margin between different labeled
sets of data samples. More formally, let D = {(xn, yn)} denote the dataset wherein xn ∈ RD is the
D-dimensional vector of the data sample and yn ∈ {−1, 1} is the data label. The learning of SVM
with `α-norm regularization is to minimize the objective function as follows:

L (w, C) =

N∑
n=1

max
(
1− ynw

>xn, 0
)

+ C−α
D∑
d=1

|wd/σd|α (1)

where w is the vector of coefficient parameters, σd is the standard deviation of the d-th feature of
x, C > 0 is the penalty hyperparameter that can be tuned for the best performance using cross-
validation.

A pseudo-likelihood of the label y has been introduced to represent SVMs as latent variable models,
so that Bayesian inference techniques can be employed to perform parameter estimation [3]. The
pseudo-likelihood is given as below:

p (y | x,w) = exp
{
−2 max

(
1− yw>x, 0

)}
Minimizing the loss function in Eq. (1) now turns into estimating the maximum a posterior (MAP)
of the following pseudo-posterior distribution:

ŵMAP (x) ∝ argmax
w

p (w | C,α, y) exp [−L (w, C)]

∝ Zα (v) p (y | x,w) p (w | C,α)

in which Zα (C) is a pseudo-posterior normalization constant.

To integrate the data augmentation scheme into this model, an auxiliary variable λ > 0 is introduced
for each observation label y [3], in a way that p (y | x,w) becomes the marginal form of a joint
distribution p (y, λ | x,w). More specifically, the inverse λ−1 of such auxiliary variable is sampled
from an Inverse Gaussian (IG) distribution:

p
(
λ−1 | x, y,w

)
∼ IG

(∣∣1− ywx>
∣∣−1 , 1)

Assuming that the prior distribution of parameter w is: p (w) ∼ N (µ0,Σ0). The data pseudo-
likelihood and the posterior conditional distribution of w reads:

p (y | x,w, λ) =

ˆ ∞
0

1√
2πλ

exp

{
−
[
λ+

(
1−w>x

)]
2λ

}
dλ

p (w | x, y, λ) = N (µ,Σ) (2)

where Σ−1 = X>Λ−1X +CΣ−10 , µ = ΣX>
(
1 + λ−1

)
with Λ = diag (λ) and 1 denotes a vector

of 1’s. Here the data matrix is denoted by X = [x1,x2, ...,xN]
>.

Viewing SVMs under this latent variable perspective enables us to employ either expectation maxi-
mization using point estimation, or Markov chain Monte Carlo (MCMC) algorithms using Bayesian
inference to learn parameters [3]. It is also proven that such algorithms are more robust and pro-
vide more accurate parameter estimation than what learned by the standard solvers of SVMs [3].
In what follows, we introduce an upgrade of the presented framework for multiclass classification
tasks, followed by a distributed version of the latent variable SVMs.

2

2.2 Multiclass latent SVMs

Here we extend the latent SVM schemes presented in Section 2.1 for multiclass classification. Sup-
pose that there are K classes, the label is now yn ∈ {1, 2, ..,K} ∀n = 1...N. We consider a set of
parameters {w1,w2, ...wK} wherein the parameter for the k-th class is wk. These parameters can
be initially set to 1. Then the auxiliary variable λn for the n-th data point is independently sampled
as follows:

λ−1n ∼ IG
(∣∣1−wyn

x>n
∣∣−1 , 1) (3)

For the posterior of parameters wk, we can use MAP estimation: wk = µk = ΣkX
>Z + µ0Σ0

where Z ∈ {−1, 1}N×K denotes the indicator matrix for the labels: znk = 1 | ∀n, yi = k, and
znk = −1 | ∀n, yn 6= k. Assume that the prior distribution is p (w | µ0,Σ0) ∼ N (0, I). Let:

P = X>diag (λ)X + I (4)

Q = X>Z (5)

From Eqs. (2,4,5), we have Pwk = Qk. Thus wk = P\Qk in which the backslash (\) indicates
the solving the system of linear equations. We prefer solving the linear system of equations to
computing the inversion of the matrix P for computational efficiency. One can use an interative
algorithm to alternatively sample the latent variable λn and compute w. However, in practice we
find that a single pass gains sufficiently good performance, thus we only perform sampling once.
Once the parameters have been learned, the label ŷnew of new data instance xnew can be predicted
as: ŷnew = argmax

k

[
w>k xnew

]
.

2.3 Distributed algorithm

Assuming that we are solving large-scale data classification problem, the number of data points
is significantly greater than the number of features, i.e., N � D. Our computational bottle-
necks are computing P and Q in Eqs. (4,5) with the computational complexity O

(
N×D2

)
and

O (N×D×K), respectively. These operations, however, can be parallelized in a distributed sys-
tem as parallelizing the matrix multiplication. Thus we can bypass these issues using a distributed
computing framework such as Spark.

More specifically, we first partition the data matrix X and the label y into disjoint M parts: X =

[X1,X2, ...,XM]
> and y = [y1,y2, ...,yM]

>. These partitions are then stored distributedly in
multiple machines. For the m-th part, the auxiliary variables λm are sampled using Eq. (3) with
xn ∈ Xm and yn ∈ ym. The part of these auxiliary variables resides in the corresponding data
partitions. The functions to compute matrices P ∈ RD×D and Q ∈ RK×D can be reformulated
using M parts as: P =

∑M
m=1 Pm + I, Q =

∑M
m=1 Qm in which the m-th parts are computed as:

Pm = X>mdiag (λm)Xm Qm = X>mZm

It is clear that we only need the data part Xm and auxiliary variable part λm to compute Pm and
Qm. Therefore, in the Spark system, the computation can be done in parallel with each partition
being processed by one worker node. The sampling and computations of λm, Pm, Qm are map
functions operating on the m-th partition. After the map functions are computed for all M parts,
reduce steps are needed to summing over all results to obtain the P and Q. This algorithm requires
two phrases of communications between driver and worker nodes. In the first phrase, the driver
machine must ship the parameters w to all worker machines which perform map functions. The
results of these functions are then reduced and sent back to the driver in the second phrase.

Once the matrices P and Q are fully specified, the driver will compute the parameters w by solving
the system of linear equations. It is noteworthy that this operator is conducted on the driver node,
thus not distributed. However, it performs on the feature dimension with the computational com-
plexityO

(
D2.376

)
[6]. Thus this step will not become a bottleneck of our method. The pseudo-code

is described in Alg. 1. We term our proposed method the sparkling vector machines (SkVM).

3

Algorithm 1 Learning algorithm of sparkling vector machine.
Input: y ∈ RN×1, X ∈ RN×D,wk = 1 : ∀k = 1, ...,K

1: The driver ships w1:K to every worker.
2: The workers perform the following steps for the m-th partition:
3: λ−1n ∼ IG

(∣∣1−wyn
x>n
∣∣−1 , 1) ,∀n ∈ m-th partition,

4: Pm = X>mdiag (λm)Xm

5: for k = 1, ...,K do
6: zk = 1N×1

7: znk = −1, ∀n ∈ m-th partition and yn 6= k
8: Qmk = X>m

[
I + diag

(
λ−1m

)]
Zm

9: end for
10: The workers reduce and send Pm and Qm back to the driver to obtain P and Q
11: The driver computes: wk = P\Qk : ∀k = 1, ...,K

Output: {w1,w2, ...,wK}

3 Evaluations

In this section, we quantitatively evaluate our proposed method on both binary and multiclass clas-
sification tasks. Our main goal is to demonstrate the scalability of SkVM in fast training large-scale
data. We use four big public datasets (i.e., Epsilon [7], Susy [8], MNIST8M [9] and Airlines dataset)
in which the number training samples is much larger than the feature dimension (millions against
hundreds). The first three datasets are obtained from UCI repository1 and LIBSVM collection2.
These datasets are readily published in the form of instance-feature matrices, and divided into train-
ing and testing subsets.

The airlines dataset is provided by American Statistical Association3. The dataset contains infor-
mation of all commercial flights in the US from October 1987 to April 2008. The aim is to predict
whether a flight will be delayed or not. A flight is considered delayed if its delay time is above 15
minutes, and non-delayed otherwise. Our preprocessing consists of two steps. First, we extract 11
fields (year; month; days of week and month; scheduled departure and arrival hours; unique carrier
code; origin and destination airport codes; reason for cancellation; diverted or not) as categorical
features which are encoded into one-hot representations, and distance as a real-valued feature. The
departure delay time is used to label the delayed flight. We then split the data into 90% for training
and 10% for testing. This results in 109, 106, 460 training and 12, 126, 373 testing data points with
857 features.

We use Python API4 of Spark to implement our proposed method. The classification performance
is evaluated using the accuracy for the Epsilon, Susy, MNIST8M datasets as their label quantities
are almost equal, whilst using F1 for the airlines data as it is unbalanced with only 10% delayed
labels. For comparison, we implement a version of our proposed model in Matlab (denoted by
Matlab-SkVM) and recruit 6 baselines implemented in Spark: logistic regression using stochastic
gradient descent (Spark-LR-SGD) and limited-memory BFGS (Spark-LR-LBFGS); Naive Bayes
(Spark-NB); linear SVM (Spark-LSVM); decision tree (Spark-DT); and random forest (Spark-RF)
[10]. All Spark-based methods run on a Hadoop-Spark cluster with 8 worker nodes, each node
equipped with 32 vcores CPU. The Matlab-SkVM runs on a single machine whose memory cannot
fit the entire data, thus it alternatively loads and unloads smaller chunks of data.

Table 1 reports the classification performance on the testing set and execution time on the training
set. Note that the Python API of Spark-LR-SGD and Spark-LSVM have not supported multiclass
classification, and the Spark-NB has not been implemented to model Gaussian distribution (real-
valued data). Hence their results for some datasets are not available. Overall, the training time of
SkVM is consistently superior to the Spark-implementation baselines and our Matlab implementa-

1https://archive.ics.uci.edu/ml/datasets/SUSY
2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
3The data can be downloaded from http://stat-computing.org/dataexpo/2009/.
4http://spark.apache.org/docs/latest/api/python/

4

https://archive.ics.uci.edu/ml/datasets/SUSY
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://stat-computing.org/dataexpo/2009/
http://spark.apache.org/docs/latest/api/python/

tion while keeping comparable predictive performances. Our method can achieve ten times speedup
in training gigantic large amount of data.

Table 1: Comparison of classification performances with 7 baselines on four large-scale datasets.
The accuracy is reported in percent (%), the execution time is reported in seconds. The higher
accuracy and F1 are the better whilst the lower running time is the better. The best performance is
in bold and the second-best is in italic.

Dataset Epsilon Susy MNIST8M Airlines
Method Accuracy Time Accuracy Time Accuracy Time F1 Time

Matlab-SkVM 89.60 194 76.58 52 84.88 765 0.23 9492
Spark-LR-SGD 50.55 157 55.37 265 – – 0.27 544

Spark-LR-LBFGS 88.52 147 75.88 371 88.82 343 0.24 461
Spark-NB – – 66.57 221 81.60 158 0.14 332

Spark-LSVM 55.99 163 60.24 271 – – 0.28 509
Spark-DT 66.10 177 77.11 244 62.40 202 0.26 755
Spark-RF 68.35 219 76.24 264 70.17 209 0.31 1455

SkVM 89.58 84 76.39 36 86.82 122 0.34 314

References

[1] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–
297, 1995. 1

[2] Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. Recent advances of large-scale linear classi-
fication. Proceedings of the IEEE, 100(9):2584–2603, 2012. 1

[3] Nicholas G Polson, Steven L Scott, et al. Data augmentation for support vector machines.
Bayesian Analysis, 6(1):1–23, 2011. 1, 2.1, 2.1

[4] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing, volume 10, page 10, 2010. 1

[5] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008. 1

[6] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.
2.3

[7] Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. An improved glmnet for l1-regularized
logistic regression. The Journal of Machine Learning Research, 13(1):1999–2030, 2012. 3

[8] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-
energy physics with deep learning. Nature communications, 5, 2014. 3

[9] Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training invariant support vector machines
using selective sampling. Large scale kernel machines, pages 301–320, 2007. 3

[10] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies
Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. Mllib: Machine learning in
apache spark. arXiv preprint arXiv:1505.06807, 2015. 3

5

