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Abstract

Tree boosting is an important type of machine learning algorithms that is wide-
ly used in practice. In this paper, we describe XGBoost, a reliable, distributed
machine learning system to scale up tree boosting algorithms. The system is opti-
mized for fast parallel tree construction, and designed to be fault tolerant under the
distributed setting. XGBoost can handle tens of millions of samples on a single
node, and scales beyond billions of samples with distributed computing.

1 Introduction

Machine learning and data mining have become a part of our daily lives. Our emails are protected
by smart spam classifiers, which learn from massive amounts of spam data and user feedback. As
we shop online, a recommender system helps us find products that match our taste by learning from
our shopping history. Besides improving personal life, machine learning also plays a key role in
helping companies make smart decisions and generate revenue: advertising systems match the right
ads with the right users at the right time. Demand forecasting systems predict product demand in
advance, allowing sellers to be prepared. Fraud detection systems protect banks from malicious
attackers. There are two important factors behind the success of these applications — effective
machine learning models that can capture the complex dependence between variables and scalable
learning systems that effectively learn the model of interest with large amount of collected data.

Tree boosting [6] is one of the most important and widely used machine learning models. Variants
of the model have been applied to problems such as classification [5, 8] and ranking [4]. These
types of models are used by many winning solutions for machine learning challenges. They are
also deployed into real world production systems, such as online advertising [7]. Despite its great
success, the existing public practice of tree boosting algorithms are still limited to million scale
datasets. While there is some discussion on how to parallelize this type of algorithm [9, 3, 11], there
is little discussion about optimizing system and algorithm jointly in order to build a reliable tree
boosting system that handles billion scale problems. In this paper, we introduce XGBoost, a novel
machine learning system that reliably scales tree boosting algorithms to billions of samples with
fault tolerance guarantees.

The major contribution of this paper is as follows: 1) We introduce a novel block based data layout
to speedup tree construction in both in-memory and external memory setting; 2) We propose a
new distributed approximation algorithm for tree searching; 3) We build a general fault-tolerant
Allreduce protocol for reliable distributed communication. The system can handle tens of millions
of data samples on a single machine, and reliably scales beyond billions of samples in distributed
setting. We released the system as a machine learning open source software. It has been widely
adopted and become one of the default machine learning packages that data scientists and industry
practitioners use in daily practice.

Tree Boosting in a Nutshell We first briefly review the learning objective in tree boosting. For a
given data set with n examples and m features D = {(xi, yi)} (|D| = n,xi ∈ Rm), a tree ensemble
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Figure 1: Left: The tree ensemble model. Right: The structure score calculation of a single tree.

model (shown in Fig. 1 left) uses K additive functions to predict the output.

ŷi = φ(xi) =

K∑
k=1

fk(xi), fk ∈ F ,

where F = {f(x) = wq(x)}(q : Rm → T,w ∈ Rm) is the space of regression trees. Here q
represents the structure of each tree that maps an example to the leaf index and w is the weight
vector of each leaf. For a given example, we will use the decision rules in the trees (given by q)
to classify them into the leaves and calculate the final prediction by summing up the scores in the
corresponding leaves (given by w). To learn a tree ensemble, we optimize the following regularized
objective

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk), Ω(f) = γT + λ‖w‖2.

Here l is a differentiable convex loss function that measures the quality of prediction ŷi on training
data, the second term Ω measures the complexity of the model to avoid over-fitting. The model is
trained in an additive matter. At each iteration t, we add a new tree to optimize the objective. We
can derive a score to measure the quality of a given tree structure q (the derivation is omitted due to
space constraints).

L̃(t)(q) = −1

2

T∑
j=1

(
∑
i∈Ij gi)

2∑
i∈Ij hi + λ

+ γT (1)

where gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)) and hi = ∂2

ŷ(t−1) l(yi, ŷ
(t−1)) are the gradient and second order

gradient statistics. This score is like the impurity score for evaluating decision trees, except that it is
derived for wider range of objective functions. Fig. 1 (right) shows how the score can be calculated:
we only need to calculate the sum statistics of examples in each leaf node, then apply Eq (1) to get
the quality of the tree. A greedy algorithm will iteratively search over the possible split candidates
and find the best split to add to the tree until a maximum depth is reached.

2 Parallel Tree Learning Algorithm
The key question in tree learning algorithms is how to find the best split, as indicated by Eq (1). In
order to do so, we need to enumerate over all possible splits over all the features. Algorithm 1 shows
how we can do such split search on a single machine. The idea is to visit the data in sorted order on
the feature type of interest, and accumulate the gradient histogram to calculate the structure score in
Eq (1). In this section, we will discuss several improvements we have made to Algorithm 1.

Input Data Layout The most time consuming part of the tree learning algorithm is getting the
data in sorted order. This makes the time complexity of learning each tree O(n log n). In order
to reduce the cost of sorting, we propose to restructure the data into an in-memory unit which we
called block. The data in each block is stored in a Compressed Column Storage (CSC) format, with
each column sorted by the feature value. Fig 2 left shows how we can transform a dataset into the
block-based format. This input data layout only needs to be computed once before training, and can
be reused in later iterations. We can store the entire dataset into a single block, and run the split
search algorithm by linearly scanning over the pre-sorted entries. This reduces the time complexity
of the tree construction to O(n). As we will show in the next section, the proposed layout will also
help the algorithm for multiple blocks.
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Algorithm 1: Parallel Tree Split Finding Algorithm on Single Machine
Input: I , instance set of current node
Input: Ik = {i ∈ I|xik 6= missing}
Input: d, feature dimension
gain← 0
G←

∑
i∈I gi,H ←

∑
i∈I hi

for k = 1 to m in parallel do
GL ← 0, HL ← 0
for j in sorted(Ik, ascent order by xjk) do

GL ← GL + gj , HL ← HL + hj
GR ← G−GL, HR ← H −HL

gain← max(gain,
G2

L

HL+λ +
G2

R

HR+λ −
G2

H+λ )

end
end
Output: Split and default direction with max gain

Figure 2: Left: The Input Data Layout. Right: Split Finding with Multiple Blocks.
Approximation Algorithm with Multiple Blocks While the single block layout works well when
the data fits in the memory of a single machine, it cannot be directly applied to the distributed
setting or external memory setting (where the data do not fit into the memory). For these general
cases, we can store the data into several blocks. In this scenario, it is no longer possible to use
Alg. 1 directly, because we cannot enumerate the entire dataset in sorted way. We will instead
resort to an approximation algorithm. The algorithm starts by proposing potential good split points
and then accumulating histograms to only evaluate the solution on these proposed splits. With a
small number of proposal splits, the histogram accumulation can be done efficiently in the setting
of multiple blocks. However, it is very important to find good proposals. We use an approximate
quantile finding algorithm to propose the percentiles of the feature distribution on the branch to be
splitted. The procedure is shown on Fig. 2 right. Importantly, the new input layout also enables
linear time construction of both the quantile sketch and histogram. The new layout also enables
easy parallelization of histogram estimation over features without introducing race conditions.

Cache-aware Prefetch Both Alg 1 and the proposed improved algorithm involve an indirec-
t fetch of gradient statistics. This is a non-continuous memory access. A naive implementation
of histogram accumulation will introduce read/write dependency between accumulation and non-
continuous memory fetch operation. This can slow down the computation due to the cache misses.
To alleviate the problem, we allocate an internal buffer in each thread, fetch the gradient statistics
into it, and then perform accumulation in a mini-batch manner. This pre-fetching helps us to reduce
the runtime overhead when the input data blocks are large.

Distributed and Out of Core Computing When there are multiple machines, we can distribute the
data by rows, and generate local data blocks in each machine. The quantile estimation and histogram
calculation are synchronized using an Allreduce style protocol, which we will elaborate in the next
section. Notably, the same algorithm can be used in out-of-core setting, where only part of data is
loaded into memory. In the out of core setting, we store the data blocks on disk, and use a pre-fetch
thread to load the data block iteratively. This enables learning from datasets that are larger than a
single machine’s memory. The out-of-core computation can also benefit the distributed learning by
allowing the algorithm to run with fewer memory resources.
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Figure 3: Allreduce Fault Recovery Protocol

3 Fault Tolerant Allreduce Protocol
In order to implement the distributed algorithm described in last section, we will need to have a com-
munication protocol to do distributed quantile estimation and histogram aggregation. We choose to
use Allreduce as the synchronization protocol. Allreduce has been successfully applied to other ma-
chine learning algorithms such as linear models [1]. The major advantage of using Allreduce is that
the transition from single machine implementation to the distributed case is straightforward. Allre-
duce also preserves the program state between reductions naturally inside program itself. This is a
valuable property for complicated machine learning algorithms, since every iteration of a machine
learning algorithm can involve several rounds of reductions and the program state in the intermedi-
ate stage are hard to capture by an explicit checkpoint. However, most existing implementations of
Allreduce are not fault tolerant between iterations, making it vulnerable to machine failures. The
existing protocols, such as the one proposed in Agarwal et.al [1] is only fault-tolerant during startup
stage of the program. We proposed a fault tolerant Allreduce protocol to address this problem.

Recovery Protocol One of the key properties of Allreduce is that all the callers get the same result
after the call. Since most machine learning algorithm only need to use Allreduce and broadcast. We
can make use of this property to construct a recovery protocol. Specifically, the result of Allreduce is
recorded in some of the nodes after the call complete. When a node fails and restarts, the computed
result can be forwarded to the restarted node, instead of doing the computation all over again. Fig. 3
gives an example of the protocol. When an error happens during the Allreduce stage, the alive nodes
will reset their state to the state right before Allreduce, and continue the recovery step.

In order to implement the protocol, we need a consensus protocol to make all the nodes agree on
which step needs to be recovered. Interestingly, this consensus protocol can be implemented using
(a non-fault tolerant) Allreduce as well, by using Allreduce to find the minimum of step counters
proposed by each node propose. The data is then transferred to the recovered node by a message
passing algorithm. The recovery protocol is built on top of these two low level primitives that do not
need to be fault tolerant1. This design also allows us to potentially swap the low level primitives to
other native implementations in the runtime platform.

Virtual Checkpoint Another property of the tree boosting algorithm is that each node holds a replica
of the model. The failed node can directly “load” the checkpoint from another node. This checkpoint
is only required to be kept in memory before next iteration starts. This allows the training process to
quickly restart from the most recent iteration. The recovery protocol can also safely discard all the
recorded results of Allreduce before the checkpoint, making the final system memory efficient.

Rabit We implemented this protocol as a library named rabit 2(reliable Allreduce and broadcast
interface). It can work on various platforms including MPI, SGE and YARN. XGBoost’s commu-
nication layer is based on top of rabit, which enables it to handle machine failures gracefully and
being able to work on the mentioned platforms.

4 Results and Discussions
Preliminary Experiment Results We benchmark the system against two major tree boosting pack-
ages on a single machine on the higgs boson challenge dataset. The result is shown in Fig. 4(a).

1We still need the low level primitives to be able to detect connection failures and notify the caller about the
event, but do not require it to perform recovery.

2https://github.com/dmlc/rabit
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Figure 4: Performance of XGBoost

As we can see even with a single core, our system runs twice as fast as R’s gbm and four times as
fast as scikit-learn. These improvements are bought by the optimizations mentioned in Sec. 2. We
also conduct an experiment specifically to evaluate the gain of cache aware prefetch, on Allstate
claim prediction dataset, which contains 10 million insurance claim records. The results are shown
in Fig. 4(b). We can find that we can get around two times speedup by using cache aware prefetch
on this setting. Finally we run an experiment on four billion criteo 3 Ad click through data set. The
experiment is configured with c3.8xlarge EC2 instances, each with 32 cores and 64G of RAM. We
place two workers on each of the machine, with each worker using 16 cores. The results are shown
in Fig. 4(c). We can find that the distributed XGBoost can easily handle billion scale dataset, and
gives near linear speedup with more machines.

Adoption and Industry Practice We have released our system as open source software on github 4.
Since its initial release, it has been widely adopted by data scientists and machine learning practi-
tioners. XGBoost has been used as a major system in winner solutions of more than ten machine
learning challenges in the past year, most of which are highly competitive. These include highly
impactful ones in the field, such as KDDCup [2]. It has also been widely adopted by industry users,
including Google, Alibaba and Tencent, and various startup companies. According to our con-
tacts, xgboost can scale with hundreds of workers (with each worker utilizing multiple processors)
smoothly and solve machine learning problems involve Terabytes of real world data.

Portability The system described in this paper can run without the support of any existing distribut-
ed frameworks, it is also designed to work with and be embedded into existing distributed platforms.
Most existing distributed systems for data processing such as Spark [12] and Reef [10] take a bottom
up approach, to provide common programming abstractions for building data processing and ma-
chine learning algorithms. Specific implementations are usually required to implement new learning
algorithms on each of these platforms. XGBoost takes a top down approach, by building a scalable
tree boosting system on top of a few primitives for which the implementation can be easily replaced.
This allows the system to be ported to any platform that implements these primitives. The integra-
tion can also happen at different level, either on resource allocation, or the communication layer. So
far, we have ported the system to common platforms such as Hadoop YARN, MPI and SGE with
no change to the source code. We believe that it can also be easily ported to other platforms that
support the minimum primitives required by XGBoost.
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