
CuMF: scale matrix factorization using just ONE
machine with GPUs

Wei Tan
IBM T. J. Watson Research Center

Yorktown Heights, NY, USA
wtan@us.ibm.com

Liangliang Cao∗
Yahoo! Labs

New York City, NY, USA
liangliang@yahoo-inc.com

Liana Fong
IBM T. J. Watson Research Center

Yorktown Heights, NY, USA
llfong@us.ibm.com

Abstract

Matrix factorization (MF) is widely used in recommendation systems. We present
cuMF, a highly-optimized matrix factorization tool with supreme performance on
graphics processing units (GPUs) by fully utilizing the GPU compute power and
minimizing the overhead of data movement. Firstly, we introduce a memory-
optimized alternating least square (ALS) method by reducing discontiguous mem-
ory access and aggressively using registers to reduce memory latency. Secondly,
we combine data parallelism with model parallelism to scale to multiple GPUs.
Results show that with up to four GPUs on one machine, cuMF can be up to ten
times as fast as those on sizable clusters on large scale problems, and has impres-
sively good performance when solving the largest matrix factorization problem
ever reported.

1 Introduction

Matrix factorization (MF) is a key algorithm in recommender systems [1]. Given a rating matrix R
(m by n) with some observed entries and many missing ones, it approximatesR by the multiplication
of two low-rank matricesX (m by f) and ΘT (f by n), in the form ofR ≈ X ·ΘT . With recommen-
dation being pervasive in Internet applications including e-commerce, digital content streaming, and
search engine advertising, MF is regarded as one of the best methods for collaborative filtering [1].
The challenges of matrix factorization lie in two aspects: scale and speed.

1. Scale. While many solutions [2, 3, 4] target at medium-sized problems [5], the industry-
scale recommendation problems have evolved to two orders of magnitude larger (see Figure
1). As an example, Facebook’s MF is with 1 billion users, millions of items and 100+
billion ratings [6]. None of the existing systems except [6] has tried to tackle problems at
this scale.

2. Speed. MF is used in many online applications where recommendations need to evolve
promptly. Approaches including MPI [4], Spark [7, 8] and parameter server [9] tackle ex-
tremely large-scale MF problems. However, they all require big (e.g., 50-node) distributed
clusters that incur high cost, and are still with suboptimal performance.

Recent advances in the field of deep learning indicates that, a few GPUs can yield similar or better
performance of a big distributed CPU cluster [10]. GPU’s success in deep learning strongly moti-

∗Work done while the author was at IBM.

1

vates us to pursue a fast and scalable MF solution on GPUs. This paper proposes cuMF (short for
CUDA Matrix Factorization), a novel scale-up solution. CuMF uses a handful of GPUs on a single
machine to tackle the largest MF problem.

Experimental results show that with up to four Nvidia GPU cards, the performance of cuMF on
a single machine can be up to ten times as fast as those on big clusters (e.g., with 50 nodes) on
large-scale problems, and has impressively good performance while solving the largest matrix
factorization problem ever reported. In terms of cost, thanks to its faster speed and lower per
machine cost, cuMF is merely 1%-5% of the baseline systems compared. As a result, we believe
cuMF’s speed and cost is very competitive.

Figure 1: The scale of MF data sets1. Y-
axis is the Nz of R, and x-axis is (m +
n)× f . See Table 2 for more details.

Baseline baseline
config

#nodes price
/node/hr

cuMF
speed

cuMF
cost

NOMAD m3.xlarge 32 $0.27 10x 3%
SparkALS m3.2xlarge 50 $0.53 10x 1%
Factorbird c3.2xlarge 50 $0.42 6x 2%

Table 1: Speed and cost (on cloud) of cuMF on
one machine compared with three multi-node CPU
systems. Note: Experiment details are in Sec-
tion 3. NOMAD [4] used m1.xlarge which is
now superseded by m3.xlarge by Amazon. Factor-
bird’s node is similar to AWS c3.2xlarge [9]. CPU
and GPU systems’ cost is calculated by (price per
node per hr)*(#nodes)*(execution time), with unit
price taken when submitting this paper (AWS price:
https://aws.amazon.com/ec2/pricing/; GPU machine
price: http://www.softlayer.com/gpu).

2 Problem Definition

CuMF adopts the alternating least square (ALS) algorithm for MF, because it is inherently parallel
and able to exploit thousands of GPU cores. ALS is computationally more expensive but requires
fewer iterations compared with stochastic gradient descent (SGD), which nicely fits the nature of
GPU computation.

2.1 ALS algorithm for matrix factorization

Matrix factorization or completion is to decompose a sparse matrix R with two lower-rank, dense
matrices X and Θ, such that R ≈ X · ΘT . Suppose ruv is the non-zero element of matrix R
at position (u, v), we want to minimize the following cost function. To avoid overfitting we use
weighted-λ-regularization proposed in [5], where nxu and nθv denote the number of total ratings on
user u and item v, respectively.

J =
∑
u,v

(ruv − xTu θv)
2 + λ(

∑
u

nxu
||xu||2 +

∑
v

nθv ||θv||2) (1)

Many optimization methods, including Alternating Least Square (ALS) [5], CGD [3], and SGD [2]
have been applied to minimize J . We adopt the ALS approach that would first optimize X while
fixing Θ, and then to optimize Θ while fixing X . Consider

∂J

∂xu
= 0;

∂J

∂θv
= 0

which lead to the following equation to update X:∑
ruv 6=0

(θvθ
T
v + λI) · xu = ΘT ·RTu∗ (2)

1CCD++ [3], DSGD [11], DSGD++ [12], Facebook [6], Factorbird [9], Flink [13], Hugewiki [2], Netflix
[5] SparkALS [14], and YahooMusic [15].

2

together with the following equation to update Θ:∑
ruv 6=0

(xuxTu + λI) · θv = XT ·R∗v (3)

ALS updates X and Θ in an alternating manner. The formalism of ALS enables solving the rows of
X (and Θ) in parallel so as to harness the power of GPU. In the rest of this paper, we explain our
method using update-X . The same method is applicable to update-Θ.

2.2 Challenges and solution of speedy and scalable ALS

Challenge 1. Computation bounded by irregular and intensive memory access. Eq. (2) involves
sparse, irregular and intensive memory access. Details are as follow:

1. Access many columns θv subject to ruv 6= 0 for every u. This access is irregular w.r.t. ΘT ,
due to the sparseness ofR. In each iteration to solve one xu we need to access nxu

columns
spread sparsely and discontiguously across the n columns in ΘT . For example, in the
Netflix data set [5], one user rates around 200 items on average, leading to a discontiguous
access of 200 columns among the total 17,770 in ΘT .

2. Aggregate many θvθTv s and xuxTu s, is memory intensive due to the large number of θvs and
xus to aggregate.

Solution to Challenge 1. We optimize memory access in ALS, including reducing discontiguous
memory access, retaining hotspot variables in faster memory, and aggressively using registers, as to
get close to the roofline performance of a single GPU. CuMF attempts to fully harness the computing
power of a single GPU. Due to the sparseness of R and the consequent irregular memory access, it
is difficult to utilize the massive FLOPS (floating point operations per second) offered by a GPU.
We exploit the GPU register file which is larger and has higher bandwidth compared to its shared
memory [16]. For example, a Nvidia Maxwell stream multiprocessor has a 256 KB register file and
only 96 KB shared memory. In cuMF, we aggressively use registers in sparse matrix multiplication.
We had to use macro expansion in C to generate verbose paragraphs of code because CUDA does
not allow declaring arrays in a register file.

Challenge 2. Scalability bounded by limited memory capacity.

When problem size get larger, ALS is bounded by the memory capacity of a single GPU. The current
Nvidia Maxwell and Kepler GPUs have 12 GB memory per card. Each card would only be able to
load 3 billion (3×109) single precision floats. However, the smallest data set, i.e., Netflix, in Figure
1, has m = 480K. When f = 100, m Hermitian matrices are with size mf2 = 480K×1002 = 4.8
billion floats > 3 billion.

Solution to Challenge 2.

In distributed machine learning, model parallelism and data parallelism are two common
schemes [17]. Model parallelism partitions parameters among multiple learners with each one
learns a subset of parameters. Data parallelism partitions the training data among multiple learners
with each one learns all parameters from its partial observation. ALS is inherently suitable for model
parallelism, as the updates of each xu and θv are independent. On top of that, we design a data-
parallel approach. CuMF distributes the computation of any single Hermitian matrix

∑
(θvθ

T
v +λI)

to multiple GPUs. Instead of transferring all θvs to one GPU, it calculates a local
∑

(θvθ
T
v + λI)

on each GPU using the local θvs, and reduce (aka., aggregate) many local
∑

(θvθ
T
v + λI)s later. By

this design cuMF is able to solve ALS of any size.

3 Experiments

We compare cuMF with state-of-art distributed solutions including NOMAD [4], Factorbird [9],
Spark ALS [14], and a Giraph based solution from Facebook [6].

Data Sets. We use Hugewiki [2] data and compare the convergence speed on test set; we also
synthesize the data sets used by SparkALS [14], Factorbird [9] and Facebook [6], and compare the
per iteration execution time.

3

Table 2: Data sets

Data Set m n #ratings (Nz) f λ
Hugewiki 50,082,603 39,780 3.1B 100 0.05
SparkALS 660M 2.4M 3.5B 10 0.05
Factorbird 229M 195M 38.5B 5 0.05
Facebook 1B 48M 112B 16 0.05

cuMF 1B 48M 112B 100 0.05

Hardware. Unless otherwise mentioned, we use one to four Nvidia Titan X GPUs, each with 3072
CUDA cores and 12 GB on-chip memory, on one machine. The machine is with two Intel Xeon
CPU E5 CPUs, 256 GB RAM, and the GPFS [18] as the file system.

Parameters. The f and λ values for each data set are given in Table 2. Feature matrices are initiated
with random numbers in [0, 1]. We focus on performance and did not spend much effort in hyper-
parameter tuning to improve accuracy.

Performance on Hugewiki data on four GPUs. We compare with multi-node NOMAD (on 64-
node HPC cluster and 32-node AWS cluster) because it outperforms DSGD [11] and DSGD++ [12].
With CuMF we partition X evenly into four GPUs and apply data parallelism. CuMF performs
slightly better than NOMAD on a 64-node HPC cluster (with a slower start because of ALS’s heavier
iteration), and much better than NOMAD on a 32-node AWS cluster, as shown in Figure 2.

Figure 2: Hugewiki with cuMF@4GPU, vs.
NOMAD on a 64-node HPC cluster and a 32-
node commodity cluster.

Figure 3: CuMF@4 on very large data sets,
compared with their original implementa-
tions.

Solve extremely large-scale problems. We conduct experiments on three extremely large problems.
We use four Nvidia GK210 cards on one machine. Each card is with 2496 CUDA cores (slightly
fewer than Titan X) and 12 GB memory, and every two cards are encapsulated as one K80 GPU.

The results for the following experiments are shown in Figure 3. SparkALS [14] is a benchmark
of Spark MLlib ALS with m = 660M, n = 2.4M, f = 10, and Nz = 3.5B. We apply model
parallelism when solving X and data parallelism when solving Θ. CuMF finishes an iteration in 24
seconds, which is ten times as fast as SparkALS.

Factorbird [9] is a parameter server for MF. It tests a data set (m = 229M, n = 195M, f = 5,
and Nz = 38.5B) on a cluster of 50 nodes. We use only model parallelism in solving X and Θ
because they both fit into one GPU. CuMF completes one iteration in 92 seconds. Factorbird needs
563 seconds per iteration, and with SGD it may need more iterations than ALS.

For the Facebook data set [6], we use data parallelism to solve both X and Θ. cuMF completes
one ALS iteration in 746 seconds. [6] did not report its speed on 50 Giraph workers, but we believe
cuMF is competitive given the difficulty of the problem and the low cost of one machine with GPUs.
We further try a larger f = 100, and cuMF completes one iteration in 3.8 hours. To the best of our
knowledge, this is by far the largest matrix factorization problem ever reported in literature.

As a summary, on three extremely large data sets, CuMF with four GPUs significantly outperforms
the original distributed implementations. CuMF is also able to factorize the largest collaborative
filtering matrix ever reported.

4

4 Conclusion

Advances in GPU computing inspire us to use them to accelerate large-scale matrix factorization.
By optimizing memory access and combining data parallelism with model parallelism, cuMF can be
up to ten times as fast as those on sizable clusters on large-scale problems. It also solves the largest
matrix factorization problem ever reported in a reasonable run-time. We plan to enhance cuMF to
one machine with more GPUs or multiple machines, to deal with even larger data sets in future.

References

[1] Y. Koren, R. M. Bell, and C. Volinsky, “Matrix factorization techniques for recommender
systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[2] Y. Zhuang, W. Chin, Y. Juan, and C. Lin, “A fast parallel SGD for matrix factorization in shared
memory systems,” in RecSys, 2013, pp. 249–256.

[3] H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon, “Scalable coordinate descent approaches to
parallel matrix factorization for recommender systems,” in ICDM, 2012, pp. 765–774.

[4] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. S. Dhillon, “NOMAD: Non-locking,
stochastic multi-machine algorithm for asynchronous and decentralized matrix completion,” in
VLDB, 2014, pp. 975–986.

[5] Y. Zhou, D. M. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel collaborative filter-
ing for the netflix prize,” in AAIM, 2008, pp. 337–348.

[6] M. Kabiljo and A. Ilic, “Recommending items to more than a billion people,” https://code.
facebook.com/posts/861999383875667, 2015, [Online; accessed 17-Aug-2015].

[7] B. Li, S. Tata, and Y. Sismanis, “Sparkler: Supporting large-scale matrix factorization,” in
EDBT, 2013, pp. 625–636.

[8] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. B.
Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Tal-
walkar, “MLlib: Machine Learning in Apache Spark,” CoRR, vol. abs/1505.06807, 2015.

[9] S. Schelter, V. Satuluri, and R. B. Zadeh, “Factorbird-a parameter server approach to dis-
tributed matrix factorization,” in NIPS Workshop on Distributed Matrix Computations, 2014.

[10] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, “Deep learning with
COTS HPC systems,” in ICML, 2013, pp. 1337–1345.

[11] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix factorization with
distributed stochastic gradient descent,” in KDD, 2011, pp. 69–77.

[12] C. Teflioudi, F. Makari, and R. Gemulla, “Distributed matrix completion,” in ICDM, 2012, pp.
655–664.

[13] T. Rohrmann, “How to factorize a 700 GB matrix with Apache Flink,” http://data-artisans.
com/how-to-factorize-a-700-gb-matrix-with-apache-flink/, 2015, [Online; accessed 15-Aug-
2015].

[14] B. Yavuz, X. Meng, and R. Xin, “Scalable Collaborative Filtering with Spark MLlib,” https://
databricks.com/blog/2014/07/23/scalable-collaborative-filtering-with-spark-mllib.html, 2014,
[Online; accessed 15-Aug-2015].

[15] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer, “The Yahoo! Music Dataset and KDD-Cup
’11,” in KDD Cup 2011 competition, 2012.

[16] J. Canny, D. L. W. Hall, and D. Klein, “A multi-teraflop constituency parser using GPUs,” in
EMNLP, 2013, pp. 1898–1907.

[17] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large scale distributed deep networks,” in NIPS,
2012, pp. 1223–1231.

[18] IBM, “General Parallel Filesystem,” http://www-01.ibm.com/support/knowledgecenter/
?lang=en#!/SSFKCN 4.1.0.4/gpfs.v4r104 welcome.html, 2014.

5

https://code.facebook.com/posts/861999383875667
https://code.facebook.com/posts/861999383875667
http://data-artisans.com/how-to-factorize-a-700-gb-matrix-with-apache-flink/
http://data-artisans.com/how-to-factorize-a-700-gb-matrix-with-apache-flink/
https://databricks.com/blog/2014/07/23/scalable-collaborative-filtering-with-spark-mllib.html
https://databricks.com/blog/2014/07/23/scalable-collaborative-filtering-with-spark-mllib.html
http://www-01.ibm.com/support/knowledgecenter/?lang=en#!/SSFKCN_4.1.0.4/gpfs.v4r104_welcome.html
http://www-01.ibm.com/support/knowledgecenter/?lang=en#!/SSFKCN_4.1.0.4/gpfs.v4r104_welcome.html

	Introduction
	Problem Definition
	ALS algorithm for matrix factorization
	Challenges and solution of speedy and scalable ALS

	Experiments
	Conclusion

