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1 Introduction

The past decade has seen substantial growth in Learning Systems research [} 9, [12} [14} 22]] com-
bining advances in system design with new efficient algorithms to enable the training of complex
models on vast amounts of data. As a consequence we have seen widespread adoption of machine
learning techniques to address important real-world problems [5} [17]].

While this work has been wildly successful in shaping both the machine learning [19, (16 [11] and
systems fields [14} [15 [1]], it also ignores a big part of real-world machine learning. In particular,
much of the work in Learning Systems has operated under the fiction: the world hands me a static,
potentially very large, dataset and I train an accurate, potentially complex, model. This fiction
departs from reality in two key regards that we begin to address in this work.

Changing Data: First, data is dynamic, growing over time and changing as people’s interests evolve
and sensing technology improves. As a consequence, we need to recognize and even embrace the
notion that model training is a continuous process [[19] that should reflect how the world changes. In
particular, while change is constant the effect that change has on model parameters may vary sub-
stantially. For example, parameters for individual users may demonstrate heavily skewed change [4]
depending on user activity while parameters associated with features that are averaged across users
change more slowly. This discrepancy presents opportunities in how we split the training process
across online and offline systems. Some of these changes can be modeled directly (e.g., through tem-
poral or historical features) [6] while others are better captured as continuous learning processes. If
we continue to focus our attention on model training systems that are relegated to offline or data-
warehouse analytics we will struggle to address the challenges of a changing world.

Model Serving: Second, a trained model is useless unless it can be evaluated quickly and reliably.
The design of learning systems does not end at ROC and speedup curves but should address the
efficient and scalable evaluation of models on new inputs within the confines of stringent real-world
latency requirements and while under intense query load. Intelligent services are being deployed in
critical paths (e.g., making decisions on what ads to show or whether transactions are fraudulent) and
they must therefore be highly available. A sudden, substantial loss in prediction accuracy or increase
in latency could have substantial consequences in terms of lost revenue, risk exposure, and personal
safety[18]. Model serving raises new questions around what should be materialized in advance
to bring down latency and what must be computed with every query? In search of low-latency
predictions what trade-offs are we willing to make in model accuracy and how can we achieve the
best accuracy for a given latency on a system with highly variable load?

In this work we explore a particular formulation of multi-task learning [3] (MTL) as a mechanism
to simultaneously address both the challenge of changing data and enable low-latency highly avail-
able model serving. In particular, we recognize that many applications of machine learning can
no longer afford to treat users as homogeneous, learning a single model for an entire population.
Instead, the shift to personalized modeling has allowed several applications to achieve state of the
art accuracy[Sl]. We exploit this common machine learning setting to structure our multi-task learn-
ing model as treating each user as a separate task. The model then factors into two components, a
shared component that averages training data across all users and thus changes slowly, and a per-task
component that reflects user-specific parameters. While the initial learning formulation learns these
two components jointly, we can decouple their training to perform incremental updates to only the
quickly changing task-specific models.



Further, we leverage this model decomposition to design a simple serving architecture that uses
the shared models to reduce prediction serving latency even for expensive models, and allows for
highly dynamic models to adapt to changes in the serving system. Key to the design of the system
is the observation that in order to adapt fast enough, at least some of model training must be done
directly in the serving system. We train the cheap, dynamic model component - the per-user models -
directly in the serving system while maintaining interactive prediction latencies and high prediction
and training throughput. We exploit the fact that expensive computation is encapsulated in shared
models to improve prediction latency through extensive caching, and can continue to learn on cached
data without invalidating the cache. Finally we demonstrate the benefits of cheap, fast retraining
directly in the serving system in an important regime: serving the first few predictions to a previously
unknown user, known as the “cold-start” problem [13].

2 Problem Setup

In this work we adopt a multi-task learning (MTL) formulation to enable simultaneous offline and
online learning at different rates. In the following we present our formulation of the learning objec-
tive and discuss some of the key decisions and their implications on the system design.

Given the data set D = {(;, y;,u;)}?; where z; € R%, y; € R (ory; € {0,1} for classification)
and user u; € {1,...,U} our goal is to estimate a model h(+;,) per user u that minimizes the
regularized loss:
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where 7, is the parameters of the model for user u, L (y, h(x;v,,)) is the error in the prediction, and
R(7,) is the regularization penalty scaled by the parameter \.

Consistent with the standard motivation for multi-task learning, we assume shared structure across
each of the learning problems (e.g., people’s music preferences share a common basis in genre. . .)
and we would like to leverage this structure to improve learning accuracy. Consequently, we decom-
pose the parametrization of the model ~y,, = (w,, #) into shared 6 and user specific w,, components:
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where D,, is the data restricted to a particular user. This formulation is consistent with standard
multi-task learning objectives, however it also exposes two new opportunities to address continu-
ous online learning and low-latency highly available model serving. If we hold 0 fixed we can
decompose the problem into smaller independent learning problems enabling the system to learn
each problem quickly and efficiently in an online distributed environment. In addition, we are able
to learn the w,, at different rates depending on the activity of each user.

By selecting a particular structure for h(-; w,,#) we can further leverage the MTL formulation to
achieve improved performance and even enable a black-box architecture capable of achieving model
personalization for generic model classes. Here we present two simple designs for h(+; w,, 6):

h(x; wy,0) = o (f(z; 0) +wlz) (Multilevel Regression)
k
h(z; wy,0) =0 <Z wiif(x; 90) . (Shared Basis)
i=0

where o (-) is the identity function for regression and an inverse link function (e.g., logistic function)
for classification.

Both formulations of h share an important property: they decompose the prediction task into a user
specific dot product and a user independent calculation f(x; 0) that can be shared across users.
Therefore, if the evaluation of f is costly it can be cached and reused across users. Furthermore,
given an oracle estimator for # we can construct a meta algorithm (discussed below) to learn a per-
sonalized (MTL) formulation, achieving automatic task specialization of generic black box learners.

The Shared Basis formulation has several additional advantages. First because the treatment of
2 is entirely mediated through the user independent model component f(x; 6;) all processing of



input (e.g., image processing, across database feature lookups and joins) can be reused across users.
Second, the Shared Basis closely reflects the design of many feature processing pipelines and deep
architectures. As a consequence, we focus our attention on the Shared Basis formulation in this
work. However, in contrast to standard formulations of basis regression, we will assume that w,, €
R* where k is typically smaller than d which enables us to more accurately estimate w,, with a few
samples and to efficiently learn and manage the w,, for each user. It is also worth noting that if we
constrain w,,, = 1 and f(x; 6;) = « for all i > 0 we recover the Multilevel regression model as a
special case (though we require a more costly & = d + 1 user specific state).

3 Hybrid Online and Offline Learning

By applying alternating minimization on {w, }?_, and 6 respectively the above MTL formulation
enables us to isolate the estimation of user specific and shared parameters. This is critical both from
a statistical and system design perspective. In particular, from a statistical perspective we expect the
estimated values of w,, to be much more sensitive to each new observation for each user (especially
new users) than the estimated values of 6 which depend on the entire dataset and should be more
concentrated under the central limit theorem. We can leverage this statistical property in the system
design by moving the estimation of 6 to a periodic offline batch retraining process and continuously
updating our estimates of w,, for each user as data arrives. Furthermore, because the optimal values
of w, are independent given 6 this estimation process can be completed in a distributed fashion
without communication or coordination.

Under the alternating minimization formulation (a form of block coordinate descent [20]) we con-
sider two optimization algorithms: first-order and oracle-mtl. The first order method assumes that
we can compute the gradients:
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If we assume the Shared Basis formulation for h we can eliminate the need for the user to provide
Eq.[3]which can be directly computed by the system under a range of loss and regularization choices.
Furthermore, with a squared loss and regularization we can apply rank-one updates to efficiently
maintain the optimal w,, in closed form.

However, to recompute 6 offline in the first-order formulation we would need to limit ourselves to
general purpose first-order solvers. For certain choices of f there may be optimized off-the-shelf
black box solvers (e.g., deep learning). To address this we propose an oracle-mtl formulation which
relies on an optimal black box solver (oracle),

arg min L (y, f(z; 0)) + nR(0), (5)

to estimate the optimal 6 holding w,, fixed. However to use the oracle-mtl formulation we currently
need to impose constraints on loss (squared) to enable construction of weighted datasets that in-
corporate the dependence on w. We are currently exploring methods around MTL boosting [3S] to
generalize this construction to other loss functions.

4 Early Results

We evaluate the accuracy improvements of the MTL formulation in two settings: exploitation of
shared training data for improved accuracy across tasks (Figure [Ta) and the ability of the shared
feature models to generalize to the cold-start setting (Figure [Tb). In both settings, we see that the
MTL formulation learned via the oracle meta-algorithm substantially outperforms learning inde-
pendent models for each task. In Figure [Ib] we see that the shared features allow the new task
models to learn from limited training data much more effectively than the much higher-dimensional
independent task models, substantially improving performance on cold-start.

We next evaluate the effectiveness of various forms of caching on improving prediction latency. We
investigated the effect of both caching the evaluation of shared features models and caching task-
specific predictions for two model implementations (see Figure [2). In both settings, a collaborative
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Figure 1: Benefits of multi-task learning on prediction accuracy
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Figure 2: Comparison of various caching strategies on prediction latency

filtering setting where feature computation is cheap and a document recommendation setting where
computing the features involves computing trigrams over the document, the benefit of prediction
caching in addition to feature-caching is negligible. This benefit is small because the additional cost
of computing a prediction once the features have been computed is small by design. However, as
Figure 2b]demonstrates, in settings where feature computation is expensive the ability to effectively
cache features becomes significant. The feature cache is effective for three reasons: the result of
feature computation is small even when intermediate results are large, the feature cache is shared
among all tasks leading to a high cache hit rate, and online updates are performed on top of the
cache leading to a low cache-invalidation rate.

5 Related Work

This work builds on related work in the machine learning and database systems communities. Most
closely related, is the work of Agarwal et al. [1] and our earlier work on the Velox model-serving
system [7]]. The work by Agarwal et al. describes the design of LASER, the general purpose machine
learning framework developed to train and serve models at LinkedIn. Likewise the work on Velox
describes an early prototype of a model serving framework developed as part of the Berkeley Data
Analytics stack.

To support personalized modeling, both introduced a multitask formulation that leverages statisti-
cal sharing across users. The work by Agarwal et al. focuses on a restricted class of regularized
bi-variate linear models, while Velox considered a restricted version of the Shared Basis model
formulation. Inspired by these earlier systems, we introduced a general framework that is capable
of expressing both the LASER and Velox model formulations as well as a broader class of bandit
algorithms needed to support competing feature functions.

To address latency both the LASER and Velox systems focused primarily on caching. The work by
Agarwal et al. proposed a richer feature cache capable of caching at many stages within a feature
function as well as a similar anytime feature evaluation strategy to the one adopted here. In contrast



this work, introduces cache equivalence classes and feature coarsening to tradeoff a small reduction
in accuracy for a substantial improvement in cache efficiency.

Each of these works differ considerably in how they approach learning. The work by Agarwal et al.
focuses on batch distributed offline retraining of both task specific and shared weights using ADMM.
Velox suggested a similar hybrid online and offline approach to training but does not provide an
algorithm. In this work we explore hybrid online and offline learning with both supervised and
unsupervised feature training. In the supervised setting we leverage additional side information
(e.g., , the topic of the news article) to construct predictive features. In the unsupervised setting we
describe a simple alternating minimization heuristic capable of automatic personalization of generic
black-box learning algorithms.

In the context of more general database systems this work builds on the the work of MauveDB [8]
and LongView [2] which first proposed model serving and management within data-management
systems. MauveDB first cast the the inference task as views on a model explored various material-
ization and caching strategies including materialization and caching of intermediate state analogous
to our feature caching. LongView explored a similar setting but introduced a query optimizer capa-
ble of trading off accuracy and computationally efficiency.

In the machine learning community perhaps the most closely related work is in the context of multi-
task learning. Yu et al. [21] introduced an alternating formulation of multi-task learning for scalable
inference based on a bilinear model similar to that of [[1]]. Stern et al. [[19] introduced a scalable
Bayesian framework for multitask learning that was later extended by Graepel et al. [[10] to manage
ad serving for Bing search. Similar to our work, this work also addressed evolving user interests.
However in all three cases the system design was largely focused on the offline setting.

6 Conclusion and Ongoing Work

This research project explores the challenges around online model serving and training. In this
work we begin to explore how an MTL formulation can be used to address both statistical and
computational challenges. Our preliminary results demonstrate the potential gains in accuracy and
reduction in latency associated with MTL based learning in the online setting. We are in the process
of extending our analysis of the oracle training formulation to boosted MTL and generalizing our
system to support a much richer family of models h.
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