
Fast FPGA System for Training Nonlinear Support
Vector Machines ∗

Mudhar Bin Rabieah and Christos-Savvas Bouganis
Department of Electrical and Electronic Engineering

Imperial College London
mob10@imperial.ac.uk

christos-savvas.bouganis@imperial.ac.uk

Abstract

Support Vector Machines (SVMs) are powerful supervised learning methods in
machine learning. However, their applicability to large problems has been lim-
ited due to the time consuming training stage whose computational cost scales
quadratically with the number of examples. In this work, a complete FPGA-
based system for nonlinear SVM training using ensemble learning is presented.
The proposed framework builds on the FPGA architecture and utilizes a cascaded
multi-precision training flow, exploits the heterogeneity within the training prob-
lem by tuning the number representation used, and supports ensemble training
tuned to each internal memory structure so to address very large datasets. Its per-
formance evaluation shows that the proposed system achieves more than an order
of magnitude better results compared to state-of-the-art CPU and GPU-based im-
plementations.

1 Introduction

Training Support Vector Machines on large datasets is a very challenging and time consuming pro-
cess as the computational complexity for many solvers is O(n2), where n is the number of training
points [2]. This hinders the applicability of such algorithms in situations where the characteristics
of the data change over time. As a result, the need for retraining is desirable. Evidence of this can
be seen in the google flu trend (GFT) where the need for model retraining was emphasized [3].

In this work, a complete FPGA-based system for accelerating nonlinear SVM training is presented.
Ensemble learning is proposed to address large datasets and take advantage of available FPGA
on-chip memory blocks. This approach allows each training subproblem to fully realize the par-
allelization potential. In addition to ensemble learning, cascaded multi-precision training flow is
proposed by exploiting FPGA reconfigurability. This flow exploits the higher parallelization factor
at the lower precision phase, which produces a reduced dataset for the higher precision phase to
generate a more accurate model.

2 Background

Support Vector Machines (SVMs) are supervised learning methods that construct a hyperplane to
classify data between two classes {-1,+1}. Given a set of examples (x1, y1), (x2, y2), . . . , (xn, yn),
where yi ∈ {−1,+1} and xi ∈ Rd. The hyperplane w is found by solving the following optimiza-

∗This work was presented at the International Conference on Field-programmable Logic and Applications
(FPL) 2015 [1].

1



tion problem:

min
1

2
‖w‖2 + C

∑
i

ξi, s.t. yi(〈w, xi〉 − b) ≥ 1− ξi, ξi ≥ 0 (1)

where ξ are slack variables to account for misclassified data. C is a constant to control the
trade-off between the error and the simplicity of the model w. The classification function is:
y = sign(〈w, x〉 − b).
Gilbert Algorithm: In [4], it was shown that Gilbert’s algorithm [5] for solving the nearest point
problem can be used to find the solution for SVM training (the slack variables ξ will be squared in
optimization problem to easily transform the non-separable problem into a separable one). Gilbert’s
algorithm tries to find the point s∗ on a given secant hull S which is the nearest to the origin. To
describe the steps of Gilbert’s algorithm, we need to define the following:

• The nearest point on the line segment connecting points a and b:

[a, b]∗ = (1− λ)a+ λb, (2)

λ =


−〈a,b−a〉
‖b−a‖2 if 0 < −〈a, b− a〉 < ‖b− a‖2;
0 if − 〈a, b− a〉 ≤ 0

1 if ‖b− a‖2 ≤ −〈a, b− a〉
(3)

• Contact function:

g∗S(x) = sm0 where 〈x, sm0〉 = max〈x, sm〉, sm ∈ S (4)

Now, at iteration k the solution is wk = [wk−1, g
∗
S(wk−1)]

∗ = (1−λ)〈wk−1, x〉+λ〈g∗S(wk−1), x〉.
In [4], it was suggested that the angle should be used as a stopping criteria: 〈wk,wk−1〉

‖wk‖‖wk−1‖ ∼ 1.

In order to make Gilbert’s algorithm applicable to SVM, the secant hull S is defined in terms of the
two classes X and Y as S = X − Y . Now, g∗S(−wk−1) can be decomposed as:

g∗S(−wk−1) = g∗X(−wk−1)− g∗Y (wk−1) (5)

Kernel functions can be used instead of dot product operations 〈., .〉, which extends SVM to nonlin-
ear cases.

Related Work: Parallel hardware structures (e.g. GPU, FPGA) have been targeted as a means for
accelerating SVM training. In [6], the whole kernel matrix is calculated on the GPU and passed
on to the CPU. In [7], the MapReduce framework was applied to the GPU. The advantage of using
the MapReduce framework on a GPU instead of a cluster of computers is local synchronization
between GPU processors. Another GPU implementation is GTSVM [8]. In this implementation,
special attention was placed for sparse datasets (datasets with many zero features). Here, vectors
with similar sparsity patterns, are grouped sequentially. This allows for a coalesced memory access.

Recently, FPGAs were also targeted as a means of acceleration. In [9, 10], kernel operations were
done as fixed point operations. Both implementations demonstrated that for many datasets, the so-
lutions accuracy was not affected. Both implementations are used as a co-processor. The FPGA
handles kernel evaluations, whereas the rest of the learning algorithm is run on the CPU. In addi-
tion to using fixed point operations, the kernel function could be sped up by approximation. This
approach was applied in [11]. Here, the exponential operation in the Gaussian kernel was replaced
by the second-order Taylor series expansion. In [12], the kernel operation is divided between fixed
point and floating point operations. The fixed point domain handles the dot product between the
attributes of the data point. This is fed to the kernel processor to complete the evaluation of the
function in the floating point domain.

In the previous implementations, the fixed structure of GPUs hinder their ability to exploit any het-
erogeneity within the training problem. As for the FPGA implementations mentioned above, some
implementations as in [9, 10], only implement part of the training algorithm on the FPGA which
reduces the parallelization potential. In [12], where a full implementation is proposed, no provision

2



was made in the case when the dataset does not fit the block rams available. In addition, all the pre-
viously mentioned FPGA implementations do not exploit the reconfigurability of such structures.
These are the issues that our proposed framework addresses. It allows for custom precision per
attribute. Also, for homogeneous datasets, a multi-stage multi-precision flow is proposed. Finally,
ensemble learning is deployed to allow each training instance to fully fit the block rams.

3 Framework Overview

Fig. 1a shows an overall view of the framework architecture. Hardware module (FPGA) is responsi-
ble for running Gilbert algorithm to solve an SVM training instance. Software modules, which run
on the CPU, are responsible for preprocessing the data (SVM Data), generating a customized hard-
ware (SVM Configuration, Synth Tool), communication and setting up the training process (SVM
Train) and running the classification process (SVM Classify). Problem description is a high level
description of the training problem which includes kernel function used (RBF, polynomial ...) and
number and types of dataset attributes (real-valued, categorical, boolean and integer).

SVM Data

SVM Train

Database

S
ca

le
d

 d
at

a

SVM Configuration

Problem 
Description

R
T

L
 f

il
es

Synth Tool

FPGA

B
it

 s
tr

ea
m

SVM Classify

Training Parameters

Data & param

Solution

S
V

M
 m

o
d

el
s

Test Data

M
is

cl
as

si
fi

ed
 d

at
a

(a)

SVM Training
(Low Precision)

SVM Training
(High Precision)

support vectors + misclassified datatraining data support vectors

(b)

Figure 1: On the left (a): Framework Overview. (b): Low precision to high precision two stage
training flow

SVM Ensemble: FPGAs provide low latency high throughput on-chip memory blocks which can
be instantiated multiple times. To fully realize the parallelization potential of such memory blocks,
an SVM ensemble is created by dividing the original data into several smaller groups, which fit the
on-chip memory blocks. Each group is fed to the FPGA to be trained independently. Theses training
models are aggregated (majority voting, weighted sum ...) at the classification phase.

Cascaded Multi-precision Training A multi-precision training flow is proposed by exploiting the
reconfigurability properties of FPGAs. At the lower precision phase, the training runs faster since
more processing units can be instantiated. The support vectors generated together with misclassified
data from this phase are passed to a higher precision phase. At the higher precision phase, less
processing units are instantiated; however, this is mitigated by reducing the number of data points
at this phase since not all the original training data is passed along. This scheme has the potential of
speeding up the training process if the reduction of data points is significant. It also has the potential
of reducing the final number of support vectors. This speeds up the classification since its execution
time is a function of the number of support vectors.

4 Hardware Implementation

Top Level Architecture: The hardware module is responsible for executing Gilbert training algo-
rithm. At the top level, several processing elements (PE), each with its own on-chip memory blocks,

3



are stacked together. The processing elements evaluate the functions g∗X(−wk−1) and g∗Y (wk−1),
which are basically equivalent to finding min〈wk−1, xi〉 and max〈wk−1, xj〉, where xi ∈ X (class
+1) and xj ∈ Y (class -1). Each processing element computes its local minimum and maximum and
pass it to the next until the last processing element produces the global minimum and maximum.

In addition to the processing elements, the hardware module consists of ”lambda calculation” and
”angle monitor” blocks to manage the next iteration and monitor the stopping criteria. All this is
managed through the main control unit. The (lambda calculation) block evaluates λ according to
equation 3. The (angle monitor) block evaluates 〈wk,wk−1〉

‖wk‖‖wk−1‖ which is used as a stopping criterion.
For both blocks, any dot product (kernel) operations are performed using the processing elements.

(a)

Fix_to_Float
Kernel 

Processor

kernel parameters

Cache
Update

Kernel 
Cache

lambda

SVs 
Cache

SV
Update

Dataset
Memory

Max/Min Kernel

x

x

x

x

x

+

+

+

+

+

min kernelmax kernel

max kernel min kernel

xi, xj

Fixed-point domain Floating-point domain

(b)

Figure 2: On the left (a): Top level hardware architecture. (b): Processing element architecture

Processing Element architecture: Fig. 2b shows the architecture of the Processing Element. The
kernel computations are divided between fixed and floating point domains. The dot product op-
erations that appear in the kernel function are performed in fixed point. The rest of the kernel
operations are done in floating point. To achieve maximum throughput, each attribute within the
dataset is fed directly to a dedicated multiplier. Also, each attribute can have its own precision to
fully utilize the FPGA resources. Each processing element updates the solution (SVs cache) cor-
responding to the training points it processes. Caching is used to speed up the overall algorithm
(Kernel Cache). This is done by realizing that 〈wk, x〉 = (1 − λ)〈wk−1, x〉 + λ〈g∗S(wk−1), x〉 =
(1− λ)cache+ λ〈g∗S(wk−1), x〉.

5 Evaluation Results

The FPGA system is implemented on Xilinx board ML605 (Virtex-6 XC6VLX240T) with an overall
clock frequency 62.5Mhz (the core of the system can reach much higher frequencies but it was
clocked down to to match the reference clock of the PCI port instantiated). The communication
between the PC and FPGA board is carried through PCI port utilizing RIFFA framework [13].

The tests were performed on our system as well as SVMlight [14], GPUSVM [7] and GTSVM [8].
SVMlight was run on an Intel Core i7-3770 machine with 16GB RAM on board. Both GPU im-
plementations were run on Nvidia Quadro K4000 GPU. Three datasets were tested, namely: adult
(32K training points with 14 heterogeneous features), forest covertype (class 2 vs. all, 522K training
points with 54 heterogeneous features) [15] and MNIST (odd vs. even, 60K training points with 784
homogeneous features) [16]. For the MNIST dataset, several additional tests were performed on the
FPGA platform: full precision (8 bits per attribute), low precision (4 bits per attribute) and a hybrid
two stage training scheme (Low precision + High precision). For all the datasets, the kernel used
was the RBF kernel. For the MNIST and Covetype datasets, ensemble training is applied for the
FPGA since the datasets do not fit the on-chip memory blocks.

Table 1, shows a summary of the training results (data preparation and setup times are not included
for all implementations). The FPGA implementation shows significant speed ups compared to the
other implementations across all datasets (especially when the number of points is large as the svm

4



Table 1: Summary of results

Data Set Implementation Test Error(%) Training Time speed up SVs
Adult SVMlight 14.8 80s 1x 18152
(C = 1, γ = 0.05) GPUSVM 17.2 5s 16x 18344

GTSVM 15 4s 20x 19138
FPGA 16.8 0.5s 160x 17845

Forest Covertype SVMlight 13.9 43200s 1x 277102
(C = 10, γ = 0.125) GPUSVM 13.9 1850s 23.4x 277402

GTSVM 29.9 1200s 36x 278564
FPGA 14 15s 2880x 294490

MNIST SVMlight 4.6 2062.75s 1x 43733
(C = 10, γ = 0.125) GPUSVM 5 425.7s 4.8x 43731

GTSVM 4.7 70s 29.5x 43584
FPGA (8 bits) 4.8 6s 343.8x 46671
FPGA (4 bits) 5 3s 687.6x 47812
FPGA (4 + 8 bits) 4.8 8s 257.8x 43882

Adult

Forest Cover Type 

MNIST (full precision)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Setup Time

Communication

Training Time

Figure 3: Setup and communication times overhead

ensemble mode is applied here). The cascaded scheme achieves similar results to the full precision
case in terms of accuracy. However, it takes slightly more time in training. This is because the
transition from the low precision to high precision phase did not result in a significant reduction in
the number of points. However, the final tally of the number support vectors was reduced which is
beneficial at the classification stage.

If setup time is included, the the overall end to end training time increases. This setup time includes
the processing of data into fixed point values, configuring the training parameters (kernel parame-
ters, regularization parameter ...), preparing data buffers and configuring communication channels
between PC and the FPGA. However, the cost of setup time is only considerable at the start of the
training process . Fig. 3 shows the data preparation time with respect to communication overhead
between the FPGA and the PC (communication between SVM train module and FPGA) and the
FPGA training time.It is clear that for small datasets (e.g Adult) the setup time becomes more con-
siderable. As for the communication overhead, it is negligible except for the case of MNIST. This
can be attributed to the fact that the dataset has many attributes which greatly reduce the number of
points in each ensemble.

6 Conclusion

In this paper, a complete FPGA-based system for accelerating nonlinear SVM training has been
presented. The proposed framework utilizes a cascaded multi-precision training flow, exploits the
heterogeneity within the training problem, and supports ensemble learning. Performance evaluations
shows that the proposed system outperforms other implementations across different datasets while
still maintaining comparable accuracy.

5



References

[1] M. Bin Rabieah and C.-S. Bouganis, “Fpga based nonlinear support vector machine training
using an ensemble learning,” in Field Programmable Logic and Applications (FPL), 2015 25th
International Conference on, Sept 2015, pp. 1–4.

[2] L. Bottou and C.-J. Lin, “Support vector machine solvers,” Large scale kernel machines, pp.
301–320, 2007.

[3] D. M. Lazer, R. Kennedy, G. King, and A. Vespignani, “The parable of google flu: traps in big
data analysis,” 2014.

[4] S. Martin, “Training support vector machines using gilbert’s algorithm,” in Data Mining, Fifth
IEEE International Conference on. IEEE, 2005, pp. 8–pp.

[5] E. G. Gilbert, “An iterative procedure for computing the minimum of a quadratic form on a
convex set,” SIAM Journal on Control, vol. 4, no. 1, pp. 61–80, 1966.

[6] A. Athanasopoulos, A. Dimou, V. Mezaris, and I. Kompatsiaris, “Gpu acceleration for support
vector machines,” in Procs. 12th Inter. Workshop on Image Analysis for Multimedia Interactive
Services (WIAMIS 2011), Delft, Netherlands, 2011.

[7] B. Catanzaro, N. Sundaram, and K. Keutzer, “A map reduce framework for programming
graphics processors,” in Workshop on Software Tools for MultiCore Systems, 2008.

[8] A. Cotter, N. Srebro, and J. Keshet, “A gpu-tailored approach for training kernelized svms,” in
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2011, pp. 805–813.

[9] H. P. Graf, S. Cadambi, V. Jakkula, M. Sankaradass, E. Cosatto, S. Chakradhar, and I. Dour-
danovic, “A massively parallel digital learning processor,” in Advances in Neural Information
Processing Systems, 2008, pp. 529–536.

[10] S. Cadambi, I. Durdanovic, V. Jakkula, M. Sankaradass, E. Cosatto, S. Chakradhar, and H. P.
Graf, “A massively parallel fpga-based coprocessor for support vector machines,” in Field
Programmable Custom Computing Machines, 2009. FCCM’09. 17th IEEE Symposium on.
IEEE, 2009, pp. 115–122.

[11] K. Nagarajan, B. Holland, A. D. George, K. C. Slatton, and H. Lam, “Accelerating machine-
learning algorithms on fpgas using pattern-based decomposition,” Journal of Signal Processing
Systems, vol. 62, no. 1, pp. 43–63, 2011.

[12] M. Papadonikolakis and C.-S. Bouganis, “A scalable fpga architecture for non-linear svm train-
ing,” in ICECE Technology, 2008. FPT 2008. International Conference on. IEEE, 2008, pp.
337–340.

[13] M. Jacobsen, Y. Freund, and R. Kastner, “Riffa: A reusable integration framework for fpga
accelerators,” in Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th
Annual International Symposium on. IEEE, 2012, pp. 216–219.

[14] T. Joachims, “Making large scale svm learning practical,” 1999.
[15] K. Bache and M. Lichman, “UCI machine learning repository,” 2013. [Online]. Available:

http://archive.ics.uci.edu/ml
[16] Y. Lecun and C. Cortes, “The MNIST database of handwritten digits.” [Online]. Available:

http://yann.lecun.com/exdb/mnist/
[17] M. Papadonikolakis and C. Bouganis, “A heterogeneous fpga architecture for support vector

machine training,” in Field-Programmable Custom Computing Machines (FCCM), 2010 18th
IEEE Annual International Symposium on. IEEE, 2010, pp. 211–214.

6

http://archive.ics.uci.edu/ml
http://yann.lecun.com/exdb/mnist/

	Introduction
	Background
	Framework Overview
	Hardware Implementation
	Evaluation Results
	Conclusion

