
Splash: User-friendly Programming Interface for
Parallelizing Stochastic Algorithms

Yuchen Zhang Michael I. Jordan
Department of Electrical Engineering and Computer Science

University of California, Berkeley CA 94720
{yuczhang,jordan}@eecs.berkeley.edu

Abstract

Stochastic algorithms are efficient approaches to solving machine learning and op-
timization problems. In this extended abstract, we proposea general framework
calledSplash for parallelizing stochastic algorithms on multi-node distributed sys-
tems. Splash consists of a programming interface and an execution engine. Us-
ing the programming interface, the user develops sequential stochastic algorithms
without concerning any detail about distributed computing. The algorithm is then
automatically parallelized by a communication-efficient execution engine. Splash
is built on top of Apache Spark. The real-data experiments onlogistic regres-
sion, collaborative filtering and topic modeling verify that Splash yields order-of-
magnitude speedup over single-thread stochastic algorithms and over state-of-the-
art implementations on Spark.

1 Introduction

Stochastic optimization algorithms process a large-scaledataset by sequentially processing random
subsamples. This processing scheme makes the per-iteration cost of the algorithm much cheaper
than that of batch processing algorithms while still yielding effective descent. Indeed, for convex
optimization, the efficiency of stochastic gradient descent (SGD) and its variants has been estab-
lished both in theory and in practice [30, 4, 27, 6, 25, 11]. For non-convex optimization, stochastic
methods achieve state-of-the-art performance on a broad class of problems, including matrix fac-
torization [12], neural networks [13] and representation learning [26]. Stochastic algorithms are
also widely used in the Bayesian setting for finding approximations to posterior distributions; ex-
amples include Markov chain Monte Carlo, expectation propagation [20] and stochastic variational
inference [10].

Although classical stochastic approximation procedures are sequential, it is clear that they also
present opportunities for parallel and distributed implementations that may yield significant addi-
tional speedups. One active line of research studies asynchronous parallel updating schemes in
the setting of a lock-free shared memory [24, 7, 17, 33, 9]. When the time delay of concurrent
updates are bounded, it is known that such updates preserve statistical correctness [1, 17]. Such
asynchronous algorithms yield significant speedups on multi-core machines. On distributed systems
connected by commodity networks, however, the communication requirements of such algorithms
can be overly expensive. If messages are frequently exchanged across the network, the communica-
tion cost will easily dominate the computation cost.

There has also been a flurry of research studying the implementation of stochastic algorithms in
the fully distributed setting [34, 32, 22, 8, 16]. Although promising results have been reported,
the implementations proposed to date have their limitations—they have been designed for specific
algorithms, or they require careful partitioning of the data to avoid inconsistency.

In this extended abstract, we propose a general framework for parallelizing stochastic algorithms on
multi-node distributed systems. Our framework is called Splash (System forParallelizingLearning

1



Algorithms withStochastic Methods). Splash consists of a programming interface and an execution
engine. Using the programming interface, the user developssequential stochastic algorithms without
thinking about issues of distributed computing. The algorithm is then automatically parallelized
by the execution engine. The parallelization is communication efficient, meaning that its separate
threads don’t communicate with each other until all of them have processed a large bulk of data.
Thus, the inter-node communication need not be a performance bottleneck.

The programming interface is designed around a key paradigm: implementing incremental updates
that processes weighted data. Unlike existing distributedmachine learning systems [5, 28, 14, 21]
which requires the user to explicitly specify a distributedalgorithm, Splash asks the user to imple-
ment a processing function that takes an individual data element as input to incrementally update the
corresponding variables. When this function is iterativelycalled on a sequence of samples, it defines
a sequential stochastic algorithm. It can also be called in adistributed manner for constructing par-
allel algorithms, which is the job of the execution engine. This programming paradigm allows one
algorithmic module working on different computing environments, no matter if it is a single-core
processor or a large-scale cluster. As a consequence, the challenge of parallelizing these algorithms
has been transferred from the developer side to the system side.

To ensure parallelizability, the user is asked to implementa slightly stronger version of the base
sequential algorithm: it needs to be capable of processingweighted samples. An m-weighted sam-
ple tells the processing function that the sample appearsm times consecutively in the sequence.
Many stochastic algorithms can be generalized to processing weighted samples without sacrificing
computational efficiency. We will demonstrate SGD and collapsed Gibbs sampling as two concrete
examples. Since the processing of weighted samples can be carried out within a sequential paradigm,
this requirement does not force the user to think about a distributed implementation.

In order to parallelize the algorithm, Splash converts a distributed processing task into a sequential
processing task using distributed versions ofaveraging andreweighting. During the execution of the
algorithm, we let every thread sequentially process its local data. The local updates are iteratively
averaged to construct the global update. Critically, however, although averaging reduces the variance
of the local updates, it doesn’t reduce their bias. In contrast to the sequential case in which a
thread processes a full sequence of random samples, in the distributed setting every individual thread
touches only a small subset of samples, resulting in a significant bias relative to the full update.
Our reweighting scheme addresses this problem by feeding the algorithm with weighted samples,
ensuring that the total weight processed by each thread is equal to the number of samples in the full
sequence. This helps individual threads to generate nearly-unbiased estimates of the full update.
Using this approach, Splash automatically detects the bestdegree of parallelism for the algorithm.

We conduct extensive experiments on a variety of stochasticalgorithms, including algorithms for
logistic regression, collaborative filtering and topic modeling. The experiments verify that Splash
can yield orders-of-magnitude speedups over single-thread stochastic algorithms and over state-of-
the-art batch algorithms.

Besides its performance, Splash is a contribution on the distributed computing systems front, pro-
viding a flexible interface for the implementation of stochastic algorithms. We build Splash on top
of Apache Spark [29], a popular distributed data-processing framework for batch algorithms. Splash
takes the standard Resilient Distributed Dataset (RDD) of Spark as input and generates an RDD as
output. The data structure also supports default RDD operators such as Map and Reduce, ensuring
convenient interaction with Spark. Because of this integration, Splash works seamlessly with other
data analytics tools in the Spark ecosystem, enabling a single system to address the entire analytics
pipeline.

2 Strategy for Parallelization

We describe the strategy for combining parallel updates. First we introduce the operators that Splash
supports for manipulating shared variables. Then we illustrate how conflicting updates are combined
by the reweighting scheme.

Operators The programming interface requires the user to implement a function called
process(elem, weight, var) which processes a weighted data element to update the set of shared
variables. The user is allowed to manipulate shared variables inside their algorithm viaoperators.

2



An operator is a function that maps a real number to another real number. Splash supports three
types of operators:add, delayed add and multiply. The system employs different strategies for
parallelizing different types of operators.

The add operator is the the most commonly used operator. When the operation is performed on
variablev, the variable is updated byv ← v + δ whereδ is a user-specified scalar. The SGD update
can be implemented using this operator.

Thedelayed add operator performs the same mappingv ← v+δ; however, the operation will not be
executed until the next time that the same element is processed by the system. Delayed operations
are useful in implementing sampling-based stochastic algorithms. In particular, before the new value
is sampled, the old value should be removed. This “reverse” operation can be declared as a delayed
operator when the old value was sampled, and executed beforethe new value is sampled.

Themultiply operator scales the variable byv ← γ ·v whereγ is a user-specified scalar. The multiply
operator is especially efficient for scaling high-dimensional arrays. The array multiplication costs
O(1) computation time, independent of the dimension of the array.

Reweighting Assume that there arem thread running in parallel. Note that all Splash operators
are linear transformations. When these operators are applied sequentially, they merge into a single
linear transformation. LetSi be the sequence of samples processed by threadi, which is a fraction
1/m of the full sequenceS. For an arbitrary shared variablev, we can write threadi’s transformation
of this variable in the following form:

v ← Γ(Si) · v +∆(Si) + T (Si), (1)

Here, bothΓ(Si), ∆(Si) andT (Si) are thread-level operators constructed by the execution engine:
Γ(Si) is the aggregated multiply operator,∆(Si) is the term resulting from the add operators, and
T (Si) is the term resulting from the delayed add operators executed in the current iteration. A
detailed construction ofΓ(Si), ∆(Si) andT (Si) is given in the full version of this extended ab-
stract [31].

Directly combining these transformations leads to divergence or slow convergence (or both) [31].
The reweighting scheme addresses this dilemma by assigningweights to the samples. Since the
update (1) is constructed on a fraction1/m of the full sequenceS, we reweight every element by
m in the local sequence. After reweighting, the data distribution of Si will approximate the data
distribution ofS. If the update (1) is a (randomized) function of the data distribution ofSi, then it
will approximate the full sequential update after the reweighting, thus generating a nearly unbiased
update.

More concretely, the algorithm manipulates the variable bytaking sample weights into account.
An m-weighted sample tells the algorithm that it appearsm times consecutively in the sequence.
We rename the transformations in (1) by Γ(mSi), ∆(mSi) andT (mSi), emphasizing that they are
constructed by processingm-weighted samples. Then we redefine the transformation of threadi by

v ← Γ(mSi) · v +∆(mSi) + T (mSi) (2)

and define the global update by

vnew =
1

m

m
∑

i=1

(

Γ(mGi) · vold +∆(mSi)
)

+

m
∑

i=1

T (mSi). (3)

Equation (3) combines the transformations of all threads. The termsΓ(mSi) and∆(mSi) are scaled
by a factor1/m because they were constructed onm times the amount of data. The termT (mSi)
is not scaled, because the delayed operators were declared in earlier iterations, independent of the
reweighting. Finally, the scaling factor1/m should be multiplied to all delayed operators declared in
the current iteration, because these delayed operators were also constructed onm times the amount
of data.

Determining the degree of parallelism To determine the thread numberm, the execution engine
partitions the available cores into different-sized groups. Suppose that groupi containsmi cores.
These cores will execute the algorithm tentatively onmi parallel threads. The best thread number
is then determined by cross-validation and is dynamically updated. The cross-validation requires
the user to implement a loss function, which takes the variable set and an individual data element

3



runtime (seconds)

0 100 200 300 400 500

lo
ss

 f
u

n
ct

io
n

0.45

0.5

0.55

0.6
Splash (SGD)
Single-thread SGD
MLlib (L-BFGS)

runtime (seconds)

0 100 200 300 400 500

p
re

d
ic

ti
o

n
 l

o
ss

0.8

1

1.2

1.4
Splash (SGD)
Single-thread SGD
MLlib (ALS)

runtime (seconds)

0 1000 2000

p
re

d
ic

ti
v
e 

lo
g
-l

ik
el

ih
o
o
d

-9

-8.5

-8
Splash (Gibbs)
Single-thread (Gibbs)
MLlib (VI)

(a) LR on MNIST 8M (b) CF on Netflix (c) LDA on NYTimes

Figure 1: Comparing Splash with baseline methods on logistic regression (LR), collaborative filter-
ing (CF) and Topic Modelling (LDA).

as input to return the loss value. See the full version of thisextended abstract [31] for a detailed
description. To find the best degree of parallelism, the basealgorithm needs to be robust in terms of
processing a wide range of sample weights.

3 Experiments

In this section, we report the empirical performance of Splash. Our implementation of Splash runs
on an Amazon EC2 cluster with eight nodes. Each node is powered by an eight-core Intel Xeon E5-
2665 with30GB of memory and was connected to a commodity 1GB network, so that the cluster
contains 64 cores. For all experiments, we compare Splash with MLlib v1.3 [19] — the official dis-
tributed machine learning library for Spark. We also compare Splash against single-thread stochastic
algorithms.

Logistic Regression We solve a digit recognition problem on the MNIST 8M dataset [18] using
multi-class logistic regression. The dataset contains 8 million hand-written digits. Each digit is rep-
resented by a feature vector of dimensiond = 784. Splash solves the optimization problem by SGD.
We compare Splash against the single-thread SGD (with AdaGrad) and the MLlib implementation
of L-BFGS [23]. Figure1(a) shows the convergence plots of the three methods. Splashconverges in
a few seconds to a good solution. The single-thread AdaGrad and the L-BFGS algorithm converges
to the same accuracy in much longer time. Splash is 15x - 30x faster than MLlib.

Collaborative Filtering For personalized movie recommendation, we use the Netflix prize
dataset [2], which contains 100 million movie ratings made by 480k users on 17k movies. The
goal is to predict the ratings in the test set given ratings inthe training set. The number of parame-
ters to be learned is 65 million. We compare Splash against the single-thread SGD method and the
MLlib implementation of alternating least square (ALS) method. According to Figure1(b), Splash
converges much faster than the single-thread SGD and the ALS. This is because that SGD can learn
accurate movie vectors by processing a fraction of the the data. For example, to achieve a prediction
loss lower than0.70, it takes Splash only 13 seconds, processing 60% of the training set. To achieve
the same prediction loss, it takes the ALS 480 seconds, taking 40 passes over the full training set. In
other words, Splash features a 36x speedup over the MLlib.

Topic Modeling We use the NYTimes article dataset from the UCI machine learning reposi-
tory [15]. The dataset contains 300k documents and 100 million word tokens. The vocabulary
size is 100k. The goal is to learnK = 500 topics from these documents. The number of param-
eters to be learned is 200 million. We employ the LDA model [3]. We compare Splash with the
single-thread collapsed Gibbs sampling algorithm and the MLlib implementation of the variational
inference (VI) method [3]. Figure1(c) plots the predictive log-likelihoods. Among the three meth-
ods, the single-thread collapsed Gibbs sampling algorithmexhibits little progress in the first 3,000
seconds. But when the algorithm is parallelized by Splash, it converges faster and better than the
MLlib implementation of variational inference (VI). In particular, Splash converges to a predictive
log-likelihoods of -8.12, while MLlib converges to -8.36. When measured at fixed target scores,
Splash is 3x - 6x faster than MLlib.

4



References

[1] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. InNIPS, pages
873–881, 2011.

[2] J. Bennett and S. Lanning. The netflix prize. InProceedings of KDD cup and workshop,
volume 2007, page 35, 2007.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. the Journal of machine
Learning research, 3:993–1022, 2003.

[4] L. Bottou. Large-scale machine learning with stochastic gradient descent. InProceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

[5] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A.Senior, P. Tucker, K. Yang,
Q. V. Le, et al. Large scale distributed deep networks. InAdvances in Neural Information
Processing Systems, pages 1223–1231, 2012.

[6] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization.The Journal of Machine Learning Research, 12:2121–2159, 2011.

[7] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed optimiza-
tion: convergence analysis and network scaling.Automatic Control, IEEE Transactions on,
57(3):592–606, 2012.

[8] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with
distributed stochastic gradient descent. InSIGKDD, pages 69–77. ACM, 2011.

[9] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger, and E. P.
Xing. More effective distributed ML via a stale synchronousparallel parameter server. In
NIPS, pages 1223–1231, 2013.

[10] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference.The
Journal of Machine Learning Research, 14(1):1303–1347, 2013.

[11] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. InNIPS, pages 315–323, 2013.

[12] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.
Computer, (8):30–37, 2009.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenetclassification with deep convolutional
neural networks. InNIPS, pages 1097–1105, 2012.

[14] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V.Josifovski, J. Long, E. J. Shekita,
and B.-Y. Su. Scaling distributed machine learning with theparameter server. InProc. OSDI,
pages 583–598, 2014.

[15] M. Lichman. UCI machine learning repository, 2013.

[16] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang. Distributed nonnegative matrix fac-
torization for web-scale dyadic data analysis on mapreduce. In WWW, pages 681–690. ACM,
2010.

[17] J. Liu, S. J. Wright, C. Ŕe, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic
coordinate descent algorithm.arXiv preprint arXiv:1311.1873, 2013.

[18] G. Loosli, S. Canu, and L. Bottou. Training invariant support vector machines using selective
sampling.Large scale kernel machines, pages 301–320, 2007.

[19] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen, et al. Mllib: Machine learning in apache spark. arXiv preprint
arXiv:1505.06807, 2015.

[20] T. P. Minka. Expectation propagation for approximate Bayesian inference. InUAI, pages
362–369. Morgan Kaufmann Publishers Inc., 2001.

[21] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: a timely
dataflow system. InProceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 439–455. ACM, 2013.

[22] D. Newman, P. Smyth, M. Welling, and A. U. Asuncion. Distributed inference for latent
Dirichlet allocation. InNIPS, pages 1081–1088, 2007.

5



[23] J. Nocedal and S. J. Wright.Numerical Optimization. Springer, New York, 2nd edition, 2006.

[24] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochas-
tic gradient descent. InNIPS, pages 693–701, 2011.

[25] M. Schmidt, N. L. Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient.arXiv preprint arXiv:1309.2388, 2013.

[26] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust
features with denoising autoencoders. InICML, pages 1096–1103. ACM, 2008.

[27] L. Xiao. Dual averaging method for regularized stochastic learning and online optimization.
In NIPS, pages 2116–2124, 2009.

[28] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and
Y. Yu. Petuum: A new platform for distributed machine learning on big data.arXiv preprint
arXiv:1312.7651, 2013.

[29] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. InNSDI. USENIX Association, 2012.

[30] T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. InICML, page 116. ACM, 2004.

[31] Y. Zhang and M. I. Jordan. Splash: User-friendly programming interface for parallelizing
stochastic algorithms.arXiv preprint arXiv:1506.07552, 2015.

[32] Y. Zhang, M. J. Wainwright, and J. C. Duchi. Communication-efficient algorithms for statisti-
cal optimization. InNIPS, pages 1502–1510, 2012.

[33] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A fast parallel SGD for matrix factorization
in shared memory systems. InRecSys, pages 249–256. ACM, 2013.

[34] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized stochastic gradient descent. In
NIPS, pages 2595–2603, 2010.

6


	Introduction
	Strategy for Parallelization
	Experiments

