Splash: User-friendly Programming I nterface for
Par allelizing Stochastic Algorithms

Yuchen Zhang Michael 1. Jordan
Department of Electrical Engineering and Computer Science
University of California, Berkeley CA 94720
{yuczhang, j ordan}@ecs. ber kel ey. edu

Abstract

Stochastic algorithms are efficient approaches to solviaghime learning and op-
timization problems. In this extended abstract, we pro@ogeneral framework
calledSplash for parallelizing stochastic algorithms on multi-nodetdimited sys-
tems. Splash consists of a programming interface and anugseengine. Us-
ing the programming interface, the user develops sequettighastic algorithms
without concerning any detail about distributed computifige algorithm is then
automatically parallelized by a communication-efficiexe@ution engine. Splash
is built on top of Apache Spark. The real-data experimentogistic regres-
sion, collaborative filtering and topic modeling verify tt&plash yields order-of-
magnitude speedup over single-thread stochastic algwsitind over state-of-the-
art implementations on Spark.

1 Introduction

Stochastic optimization algorithms process a large-stataset by sequentially processing random
subsamples. This processing scheme makes the per-itecatsd of the algorithm much cheaper
than that of batch processing algorithms while still yietglieffective descent. Indeed, for convex
optimization, the efficiency of stochastic gradient des¢&&D) and its variants has been estab-
lished both in theory and in practicaq, 4, 27, 6, 25, 11]. For non-convex optimization, stochastic
methods achieve state-of-the-art performance on a br@ad of problems, including matrix fac-
torization [L2], neural networks I3] and representation learnin@€q]. Stochastic algorithms are
also widely used in the Bayesian setting for finding appr@tions to posterior distributions; ex-
amples include Markov chain Monte Carlo, expectation pgagian 20] and stochastic variational
inference 10].

Although classical stochastic approximation proceduressaquential, it is clear that they also
present opportunities for parallel and distributed imptatations that may yield significant addi-
tional speedups. One active line of research studies asymoiis parallel updating schemes in
the setting of a lock-free shared memoR4[7, 17, 33, 9]. When the time delay of concurrent
updates are bounded, it is known that such updates predatistical correctnessl] 17]. Such
asynchronous algorithms yield significant speedups onifooite machines. On distributed systems
connected by commodity networks, however, the commuminatquirements of such algorithms
can be overly expensive. If messages are frequently exeldeangyoss the network, the communica-
tion cost will easily dominate the computation cost.

There has also been a flurry of research studying the impletien of stochastic algorithms in
the fully distributed setting3d4, 32, 22, 8, 16]. Although promising results have been reported,
the implementations proposed to date have their limitatiethey have been designed for specific
algorithms, or they require careful partitioning of thealtd avoid inconsistency.

In this extended abstract, we propose a general framewogafallelizing stochastic algorithms on
multi-node distributed systems. Our framework is callethSip System forParallelizingL earning

Algorithms withStochastic Metods). Splash consists of a programming interface and amuggac
engine. Using the programming interface, the user devaleggential stochastic algorithms without
thinking about issues of distributed computing. The alyoni is then automatically parallelized
by the execution engine. The parallelization is commuivcagfficient, meaning that its separate
threads don’'t communicate with each other until all of thesmenprocessed a large bulk of data.
Thus, the inter-node communication need not be a perforenbottleneck.

The programming interface is designed around a key paradigplementing incremental updates
that processes weighted data. Unlike existing distribut@ghine learning systems,[28, 14, 21]
which requires the user to explicitly specify a distributddgorithm, Splash asks the user to imple-
ment a processing function that takes an individual dataefe as input to incrementally update the
corresponding variables. When this function is iterativagited on a sequence of samples, it defines
a sequential stochastic algorithm. It can also be calleddistaibuted manner for constructing par-
allel algorithms, which is the job of the execution engindisiprogramming paradigm allows one
algorithmic module working on different computing enviments, no matter if it is a single-core
processor or a large-scale cluster. As a consequence,dlerde of parallelizing these algorithms
has been transferred from the developer side to the systEm si

To ensure parallelizability, the user is asked to implengestightly stronger version of the base
sequential algorithm: it needs to be capable of processénghted samples. An m-weighted sam-
ple tells the processing function that the sample appeatsnes consecutively in the sequence.
Many stochastic algorithms can be generalized to procgss@ighted samples without sacrificing
computational efficiency. We will demonstrate SGD and gsléd Gibbs sampling as two concrete
examples. Since the processing of weighted samples camriexioaut within a sequential paradigm,
this requirement does not force the user to think about aloliseéd implementation.

In order to parallelize the algorithm, Splash converts &itisted processing task into a sequential
processing task using distributed versionswaraging andreweighting. During the execution of the
algorithm, we let every thread sequentially process italldata. The local updates are iteratively
averaged to construct the global update. Critically, h@mesdthough averaging reduces the variance
of the local updates, it doesn’t reduce their bias. In cattta the sequential case in which a
thread processes a full sequence of random samples, irsthidualied setting every individual thread
touches only a small subset of samples, resulting in a sigmifibias relative to the full update.
Our reweighting scheme addresses this problem by feedamgltorithm with weighted samples,
ensuring that the total weight processed by each threadia eémthe number of samples in the full
sequence. This helps individual threads to generate nraaliased estimates of the full update.
Using this approach, Splash automatically detects thedwsegte of parallelism for the algorithm.

We conduct extensive experiments on a variety of stochafiimrithms, including algorithms for
logistic regression, collaborative filtering and topic rabidg. The experiments verify that Splash
can yield orders-of-magnitude speedups over single-thsezchastic algorithms and over state-of-
the-art batch algorithms.

Besides its performance, Splash is a contribution on thteilalised computing systems front, pro-
viding a flexible interface for the implementation of stosti@algorithms. We build Splash on top
of Apache Spark9], a popular distributed data-processing framework fochatgorithms. Splash
takes the standard Resilient Distributed Dataset (RDD)pairiSas input and generates an RDD as
output. The data structure also supports default RDD operauch as Map and Reduce, ensuring
convenient interaction with Spark. Because of this integna Splash works seamlessly with other
data analytics tools in the Spark ecosystem, enabling desaygtem to address the entire analytics
pipeline.

2 Strategy for Parallelization

We describe the strategy for combining parallel updatest fie introduce the operators that Splash
supports for manipulating shared variables. Then we itisthow conflicting updates are combined
by the reweighting scheme.

Operators The programming interface requires the user to implementuraction called
process(elem, weight, var) which processes a weighted data element to update the deirefds
variables. The user is allowed to manipulate shared vasaibkide their algorithm viaperators.

An operator is a function that maps a real nhumber to anott@rmenber. Splash supports three
types of operatorsadd, delayed add and multiply. The system employs different strategies for
parallelizing different types of operators.

The add operator is the the most commonly used operator. When thextipeiis performed on
variablev, the variable is updated hy<« v + § whered is a user-specified scalar. The SGD update
can be implemented using this operator.

Thedelayed add operator performs the same mapping- v+ J; however, the operation will not be
executed until the next time that the same element is preddsgthe system. Delayed operations
are useful in implementing sampling-based stochastia#fgos. In particular, before the new value
is sampled, the old value should be removed. This “reverpetation can be declared as a delayed
operator when the old value was sampled, and executed lbforew value is sampled.

Themultiply operator scales the variable by— ~-v wherey is a user-specified scalar. The multiply
operator is especially efficient for scaling high-dimensibarrays. The array multiplication costs
O(1) computation time, independent of the dimension of the array

Reweighting Assume that there an@ thread running in parallel. Note that all Splash operators
are linear transformations. When these operators are dm@iguentially, they merge into a single
linear transformation. Le$; be the sequence of samples processed by thiresldich is a fraction
1/m of the full sequencé. For an arbitrary shared variablewe can write threads transformation

of this variable in the following form:

Here, bothl'(S;), A(S;) andT'(S;) are thread-level operators constructed by the executigimen
I'(S;) is the aggregated multiply operatak(.S;) is the term resulting from the add operators, and
T(S;) is the term resulting from the delayed add operators exdant¢he current iteration. A
detailed construction df(S;), A(S;) andT'(S;) is given in the full version of this extended ab-
stract B1].

Directly combining these transformations leads to diveogeor slow convergence (or bott31].
The reweighting scheme addresses this dilemma by assigréights to the samples. Since the
update {) is constructed on a fractiohym of the full sequences, we reweight every element by
m in the local sequence. After reweighting, the data distidouof S; will approximate the data
distribution of S. If the update 1) is a (randomized) function of the data distributionS%f then it
will approximate the full sequential update after the rehgéing, thus generating a nearly unbiased
update.

More concretely, the algorithm manipulates the variablediing sample weights into account.
An m-weighted sample tells the algorithm that it appearsimes consecutively in the sequence.
We rename the transformations iy by I'(m.S;), A(m.S;) andT'(mS;), emphasizing that they are
constructed by processing-weighted samples. Then we redefine the transformatiorreétti by

v T'(mS;) - v+ A(mS;) + T(mS;) 2
and define the global update by

1 m m
Unew = — (F mG;) - vod + A(mS;) +) T(mS;). 3)

2 (DG (mS)) + 3 Tms)
Equation 8) combines the transformations of all threads. The tdr(msS;) andA(m.S;) are scaled
by a factorl /m because they were constructedrartimes the amount of data. The teffi{m.S;)
is not scaled, because the delayed operators were deataeadlier iterations, independent of the
reweighting. Finally, the scaling factadym should be multiplied to all delayed operators declared in
the current iteration, because these delayed operatoesalsey constructed am times the amount
of data.

Determining the degree of parallelism To determine the thread number, the execution engine
partitions the available cores into different-sized gmufuppose that groupcontainsm; cores.
These cores will execute the algorithm tentativelyronparallel threads. The best thread number
is then determined by cross-validation and is dynamicagligated. The cross-validation requires
the user to implement a loss function, which takes the viriaét and an individual data element

0.6 1.4
—==Splash (SGD) —==Splash (SGD)

— =-Single-thread SGD 12 — =Single-thread SGD B
0.55 —\MLlib (L-BFGS) " —MLIib (ALS) 2
S 2 =

s = 1 ™ -
Q [=] _
E E
F 2 2
g 508 Z
& i ST S
| - S

2

0 100 200 300 400 500 0 100 200 300 400 500 0 1000 2000
runtime (seconds) runtime (seconds) runtime (seconds)
(@) LR on MNIST 8M (b) CF on Netflix (c) LDA on NYTimes

Figure 1: Comparing Splash with baseline methods on lagietiression (LR), collaborative filter-
ing (CF) and Topic Modelling (LDA).

as input to return the loss value. See the full version of ¢étended abstracB8]] for a detailed
description. To find the best degree of parallelism, the big@rithm needs to be robust in terms of
processing a wide range of sample weights.

3 Experiments

In this section, we report the empirical performance of SiplaDur implementation of Splash runs
on an Amazon EC2 cluster with eight nodes. Each node is palisran eight-core Intel Xeon E5-
2665 with30GB of memory and was connected to a commodity 1GB networkhabthe cluster
contains 64 cores. For all experiments, we compare SplashMiilib v1.3 [19] — the official dis-
tributed machine learning library for Spark. We also coref#plash against single-thread stochastic
algorithms.

Logistic Regresson We solve a digit recognition problem on the MNIST 8M datadéj Lsing
multi-class logistic regression. The dataset containslBomihand-written digits. Each digit is rep-
resented by a feature vector of dimensibs 784. Splash solves the optimization problem by SGD.
We compare Splash against the single-thread SGD (with Aai#@nd the MLIib implementation
of L-BFGS [23]. Figure1(a) shows the convergence plots of the three methods. Sgiasierges in

a few seconds to a good solution. The single-thread AdaGrddhee L-BFGS algorithm converges
to the same accuracy in much longer time. Splash is 15x - 3&rféghan MLIib.

Collaborative Filtering For personalized movie recommendation, we use the Netfiize pr
dataset 2], which contains 100 million movie ratings made by 480k ssen 17k movies. The
goal is to predict the ratings in the test set given ratinghéntraining set. The number of parame-
ters to be learned is 65 million. We compare Splash agaiessitigle-thread SGD method and the
MLIib implementation of alternating least square (ALS) hwd. According to Figuré(b), Splash
converges much faster than the single-thread SGD and the RiiSis because that SGD can learn
accurate movie vectors by processing a fraction of the ttee &@r example, to achieve a prediction
loss lower than).70, it takes Splash only 13 seconds, processing 60% of therigpget. To achieve
the same prediction loss, it takes the ALS 480 seconds,galirpasses over the full training set. In
other words, Splash features a 36x speedup over the MLlIib.

Topic Modeling We use the NYTimes article dataset from the UCI machine legrreposi-
tory [15]. The dataset contains 300k documents and 100 million wokdrts. The vocabulary
size is 100k. The goal is to leadd = 500 topics from these documents. The number of param-
eters to be learned is 200 million. We employ the LDA mo@}! [We compare Splash with the
single-thread collapsed Gibbs sampling algorithm and thédMmplementation of the variational
inference (VI) methodd]. Figurel1(c) plots the predictive log-likelihoods. Among the threeth:
ods, the single-thread collapsed Gibbs sampling algorékhibits little progress in the first 3,000
seconds. But when the algorithm is parallelized by Splastprverges faster and better than the
MLlIib implementation of variational inference (VI). In gégular, Splash converges to a predictive
log-likelihoods of -8.12, while MLIib converges to -8.36. & measured at fixed target scores,
Splash is 3x - 6x faster than MLlIib.

References

[1]
2]
[3]
[4]
[5]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

A. Agarwal and J. C. Duchi. Distributed delayed stoclasptimization. InNIPS pages
873-881, 2011.

J. Bennett and S. Lanning. The netflix prize. Pnoceedings of KDD cup and workshop,
volume 2007, page 35, 2007.

D. M. Blei, A. Y. Ng, and M. . Jordan. Latent Dirichlet altation. the Journal of machine
Learning research, 3:993-1022, 2003.

L. Bottou. Large-scale machine learning with stoclagtiadient descent. IRroceedings of
COMPSTAT 2010, pages 177-186. Springer, 2010.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,S&nior, P. Tucker, K. Yang,
Q. V. Le, et al. Large scale distributed deep networks Adimances in Neural Information
Processing Systems, pages 1223-1231, 2012.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradieethods for online learning and
stochastic optimizatioriThe Journal of Machine Learning Research, 12:2121-2159, 2011.

J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual aveiag for distributed optimiza-
tion: convergence analysis and network scalidgitomatic Control, |EEE Transactions on,
57(3):592-606, 2012.

R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Lagge matrix factorization with
distributed stochastic gradient descentSIGKDD, pages 69-77. ACM, 2011.

Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G.@ibson, G. Ganger, and E. P.
Xing. More effective distributed ML via a stale synchronqerallel parameter server. In
NIPS pages 1223-1231, 2013.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stostia variational inferenceThe
Journal of Machine Learning Research, 14(1):1303-1347, 2013.

R. Johnson and T. Zhang. Accelerating stochastic gradiescent using predictive variance
reduction. InNIPS, pages 315-323, 2013.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorizatictechniques for recommender systems.
Computer, (8):30-37, 2009.

A. Krizhevsky, |. Sutskever, and G. E. Hinton. Imageclessification with deep convolutional
neural networks. INIPS, pages 1097-1105, 2012.

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. AhmedJ¥sifovski, J. Long, E. J. Shekita,
and B.-Y. Su. Scaling distributed machine learning withpgheameter server. IRroc. ODI,
pages 583-598, 2014.

M. Lichman. UCI machine learning repository, 2013.

C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang. Dibtited nonnegative matrix fac-
torization for web-scale dyadic data analysis on mapredic®\W\W, pages 681-690. ACM,
2010.

J. Liu, S. J. Wright, C. B, V. Bittorf, and S. Sridhar. An asynchronous parallel s&stic
coordinate descent algorithrar Xiv preprint arXiv: 1311.1873, 2013.

G. Loosli, S. Canu, and L. Bottou. Training invarianpport vector machines using selective
sampling.Large scale kernel machines, pages 301-320, 2007.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkatamapta. Liu, J. Freeman, D. Tsali,
M. Amde, S. Owen, et al. Mllib: Machine learning in apacherkpa arXiv preprint
arXiv: 1505.06807, 2015.

T. P. Minka. Expectation propagation for approximatayBsian inference. IWAI, pages
362-369. Morgan Kaufmann Publishers Inc., 2001.

D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barhamd M. Abadi. Naiad: a timely
dataflow system. IProceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 439-455. ACM, 2013.

D. Newman, P. Smyth, M. Welling, and A. U. Asuncion. Distited inference for latent
Dirichlet allocation. InNIPS, pages 1081-1088, 2007.

(23]
[24]

[25]
[26]
[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]

J. Nocedal and S. J. Wrightumerical Optimization. Springer, New York, 2nd edition, 2006.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-€rapproach to parallelizing stochas-
tic gradient descent. INIPS pages 693—-701, 2011.

M. Schmidt, N. L. Roux, and F. Bach. Minimizing finite senwith the stochastic average
gradient.arXiv preprint arXiv:1309.2388, 2013.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. ManzhgBxtracting and composing robust
features with denoising autoencodersl@ML, pages 1096—1103. ACM, 2008.

L. Xiao. Dual averaging method for regularized stodltalearning and online optimization.
In NIPS, pages 2116—-2124, 2009.

E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zhenig Xie, A. Kumar, and
Y. Yu. Petuum: A new platform for distributed machine leagnion big data.arXiv preprint
arXiv:1312.7651, 2013.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc@a M. J. Franklin, S. Shenker,

and |. Stoica. Resilient distributed datasets: A fauletaht abstraction for in-memory cluster
computing. INNSDI. USENIX Association, 2012.

T. Zhang. Solving large scale linear prediction proleusing stochastic gradient descent
algorithms. InNICML, page 116. ACM, 2004.

Y. Zhang and M. I. Jordan. Splash: User-friendly prognaing interface for parallelizing
stochastic algorithmsarXiv preprint ar Xiv: 1506.07552, 2015.

Y. Zhang, M. J. Wainwright, and J. C. Duchi. Communioatiefficient algorithms for statisti-
cal optimization. INNIPS, pages 1502-1510, 2012.

Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A faatadlel SGD for matrix factorization
in shared memory systems. RecSys, pages 249-256. ACM, 2013.

M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Paralled stochastic gradient descent. In
NIPS, pages 2595-2603, 2010.

	Introduction
	Strategy for Parallelization
	Experiments

