
Interactive machine learning using BIDMach

Biye Jiang
Computer Science Division

University of California
Berkeley, CA 94720

bjiang@cs.berkeley.edu

John Canny
Computer Science Division

University of California
Berkeley, CA 94720

jfc@cs.berkeley.edu

Abstract

Machine learning is growing in importance in industry, the sciences, and many
other fields. In many and perhaps most of these applications, users need to trade
off competing goals and build different model prototypes rapidly, which requires
much human intelligence and is time consuming. Therefore, interactive cus-
tomization and optimization aims to help expert incorporate secondary criteria
into the model-generation process in an interactive way.
In this paper we describe the design of BIDMach machine learning system, with
an emphasis of performing customized and interactive model optimization. The
keys of the design are (i) a machine learning architecture which is modular, and
support primary and secondary loss functions (ii) high-performance training so
that non-trivial models can be trained in real-time (using roofline design and GPU
hardware) (iii) highly-interactive visualization tools that support dynamic creation
of visualizations and controls to match the bespoke criteria being optimized.
Also, when we later turn to deep neural networks which require hours or days
for training, we discuss how our current framework could be extended to support
monitoring and optimizing learning schedule.

1 BIDMach: high-performance, customized machine learning framework

Figure 1: BIDMach’s Architecture

Visualization
in Browser Web Server

Computing
Engine

Grab data from
GPU 3~5 times/s User input

Model parameters

Using D3.js

Through
WebSocket Manipulate

parameters

Figure 2: Visualization Architecture

The first key to interactive, customized machine learning is an architecture which supports it. BID-
Mach [5] is a new machine learning toolkit which has demonstrated extremely high performance
with modest hardware (single computers with GPUs), and which has the modular design shown in
Fig 1. BIDMach uses minibatch updates, typically many per second, so that models are being up-
dated continuously. This is a good match to interactive modeling, since the effects of analysts actions
will be seen quickly. Rather than a single model class, models comprise first a primary model, which
typically outputs the model loss on a minibatch and a derivative or other update (Gibbs sampling for
example) for it. Next an optimizer is responsible for updating the model given gradients. Finally,
“mixin” represents secondary constraints or likelihoods. Primary models and mixins are combined

1

with a weighted sum. In our interactive context, these weights are set interactively. Details of the
mixins will be described in the next section.

BIDMach supports a variety of machine learning models, and new models or components could
be easily implemented in high level Scala language. Besides productivity, high performance is very
important for interactivity. Using roofline design to optimize computational kernels toward hardware
limits and to fully leverage the performance of single machine, BIDMach has reduced the running
time of many non-trivial ML tasks from hours to minutes. And even for models that take minutes to
train fully, the effects of parameter changes are typically visible in seconds.

2 Architecture for interactive modeling

2.1 Mixin functions as secondary criteria

Model customization is useful for both supervised and unsupervised problems. Unsupervised learn-
ing involves a certain amount of arbitrariness in the criteria for the best latent state [6]. But even
fully supervised models (e.g. click prediction models) may be subject to a variety of secondary
constraints or “business logic” desiderata.

Therefore, different evaluation criteria are often used to measure model performance. For example,
clustering usually uses a measure of model/centroid similarity, and may use intra-cluster coherence
measures or inter-cluster distance as well. ROC AUC, DCG, and precision-recall measures are also
commonly used to evaluate supervised models.

But usually the model itself optimizes a much simpler criterion, which follows by some filtering
steps in order to fit the model into evaluation criteria or constrains. Clearly one should get better
scores for these criteria if they were directly optimized as part of training. In BIDMach, we deal with
this problem by associating a variety of secondary or “mixin” criteria as part of the learning process.
In our design, mixin is a built-in component which is separated from the model class. Therefore
it can also be shared across different models. We use a linear combination of cost functions for
primary and secondary criteria:

argmin
θ
f(θ, d) +

∑
i

λi ∗ gi(θ)

Where θ is the model parameters, d is data, f is the primary cost function defined by the model and
gi are the user-defined mixin functions. The weights λi are “controls” that could be dynamically
adjusted by the analyst as part of training. One simple example of a mixin function is just the
L1-regularization which can enforce sparsity.

Such design makes it very easy to implement new customized model, which is very important for
iteratively prototyping. After building the model, for the primary criterion f and each secondary
criteria gi there should be at least one dynamic graphic that captures changes in that criterion in an
intuitive way, as shown in Fig 3. The analyst watches these as each of the controls are adjusted to
monitor the tradeoff between them.

2.2 Controlling the learning schedule

Besides adding mixin functions, the BIDMach engine also provides a very convenient way for users
to specify customized learning schedule, like setting different learning rates in different learning
stages. Also, for models like LDA [3], instead of computing the gradient of the model, Gibbs
sampling is used for optimizing the likelihood. To be specific, Gibbs sampling is used to estimate
hidden state and model parameters in a joint distribution P (X,Z,Θ), where X is the observed data,
Z is the hidden state and θ is the model parameters. In each iteration, a new model estimation will
be computed, and merged into the old model parameters in an online way [9].

Learning rates could be used to control such learning procedure, and users can also control the
sampling variance by using SAME sampling [8], which draw K independent copies rather than
one from the hidden state distribution Z. Setting different K will lead to very different sampling
behavior. This gives us extra flexibility to control the learning procedure. As discussed in [15], using
annealing schedule for K can lead to a better convergence rate.

2

2.3 Client-Server architecture

In order to interact with the users, we use a client-server architecture with 3 components as shown
in Fig 2: a computing (BIDMach) engine, a web server, and a web based front end. As the model
is being trained in the engine, the front end will receive real-time updates for each minibatch via
the web server. User can also change weights of the mixin functions via the interface and observe
the effects on the fly. Therefore we use WebSockets for bi-directional communication between
client and server. And for simplicity and extensibility, we use JSON as the over-the-wire exchange
format. Such architecture is well-suited for the cloud environment, where computation is usually
done remotely.

3 Visual interface

In the client side, we implement a web based interface which uses D3.js [4] for data visualization.
D3.js is very flexible and has good support for animation. We provide several different kinds of
visualization that users could use them to customize their dashboard, as shown in Fig 3. Since we
are optimizing an additive function which consists of a main loss term as well as several Mixin
terms. The value of the cost functions can reflect how model behaves under each criteria. Therefore
visualizing the main loss function as well as other Mixin functions as streaming data is very useful.
Especially when we change the control parameters, it will reflect how algorithm responses to the user
control and whether the tradeoff for Mixin functions may affect the general model performance.

Besides, we also have model-specific visualizations to provide a natural interpretation of the model
directly. For image models, we can directly visualize the image patches. And for topic models like
LDA, we visualize the weights of the model matrix using similar designs from [7], as show in Fig 3.

Also, users can create sliders in the dashboard, which are used to change hyper-parameters of the
model. As described above, all the changes will be send back to the engine immediately and the
effect will be taken in the next mini-batch.

Figure 3: Visualization for LDA

4 Use Case

Fig 3 demonstrates a real use case of our toolkit. When training a LDA [3] topic model on UCI
NYTimes dataset [11], we at the same time minimize its topic-wised cosine similarity metric:

g(T) =
∑

1≤i,j≤N

Ti · Tj

Where Ti is the ith Topic vector (probability distribution of the words), and N is the number of
topics.

3

Optimizing this mixin criteria is to make topics become less similar to each other. However, it is
not easy to set a good weight for this mixin function. Typically, the mixin function will not affect
the model at all if the weight is too small, while a larger weight may lead to significant drop in
model likelihood. Therefore, by observing the model likelihood as well as the secondary criteria at
the same time, we are able to tradeoff between them based on the real-time feedback. After some
tuning, we can drop the cosine similarity to be almost 0, while the model likelihood is almost the
same as the origin one.

For model in such a scale, BIDMach takes around 30s for one entire pass. However, as show in
Fig 3, the model converges in only several seconds, and all the responses to user control happen in
around one second as well. On the other hand, the model matrix visualization helps user confirm
model correctness and also shows that optimizing the topic-wised cosine similarity will actually lead
to a sparse model.

5 Scaling to deep neural network

Deep neural networks, on the other hand, usually take hours or even days to train. And people tend
to use global learning rate schedule for different layers. This is because tuning hyper-parameters
either heavily relies on human expert heuristic [1] or uses gradient-free optimization techniques [2].
Both of them could not scale well as the number of hyper-parameters increase.

Recently, Maclaurin et al [12] use the whole training history (model parameters in each epoch) to
compute the exact gradient for the hyper-parameters regarding to the final loss, therefore make it
possible to directly optimize hyper-parameters in different epoch/layers. Their proof of concept
experiments found that a better learning schedule may have different learning rate for different layer
and the learning rates are not always decreasing. These shed light on the possibility to use a more
complex learning schedule and find better hyper-parameters using history of learning procedure.

But their current approach is still limited to small scale networks. For large scale networks, logging
the entire model is not practical and not efficient. Much information is actually redundant. There-
fore, logging aggregated data via user defined functions for each layer is a better choice. However,
few work have been done to really investigate the dynamics of the training procedure. Several work
like [14, 10] use visualization to interpret the results and model parameters of deep neural networks,
but they didn’t analyze the training procedure. On the other hand, most deep learning toolkit pro-
vide the function to monitor training progress. [13] also describes adding logging and visualization
into the framework. But most logging functions they provide are designed for checkpoint or model
selection, while in our case, the dynamics of the learning procedure such as magnitude of the gra-
dient flow or variation or model parameters is more important. Once such aggregated data becomes
available, online/offline exploration tools could be built to support analysis and optimization of the
learning procedure. This is still an ongoing work and we will describe it in details in future papers.

6 Conclusion

We describe the design of BIDMach which supports customized and interactive model optimization
and demonstrate its function via a real use case. The use of mixin functions, learning schedule
control and visual interface provide great flexibilities for model prototyping. We also describe the
ongoing work about finding better learning schedule for deep neural network. A better logging
component will be designed to support analysis and optimization of training procedure.

References

[1] Y. Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural Networks: Tricks of the Trade, pages 437–478. Springer, 2012.

[2] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimiza-
tion. In Advances in Neural Information Processing Systems, pages 2546–2554, 2011.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of machine
Learning research, 3:993–1022, 2003.

4

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. Visualization and Com-
puter Graphics, IEEE Transactions on, 17(12):2301–2309, 2011.

[5] J. Canny and H. Zhao. Big data analytics with small footprint: Squaring the cloud. In Pro-
ceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 95–103. ACM, 2013.

[6] J. Chang, S. Gerrish, C. Wang, J. L. Boyd-graber, and D. M. Blei. Reading tea leaves: How
humans interpret topic models. In Advances in neural information processing systems, pages
288–296, 2009.

[7] J. Chuang, C. D. Manning, and J. Heer. Termite: Visualization techniques for assessing textual
topic models. In Proceedings of the International Working Conference on Advanced Visual
Interfaces, pages 74–77. ACM, 2012.

[8] A. Doucet, S. J. Godsill, and C. P. Robert. Marginal maximum a posteriori estimation using
markov chain monte carlo. Statistics and Computing, 12(1):77–84, 2002.

[9] M. Hoffman, F. R. Bach, and D. M. Blei. Online learning for latent dirichlet allocation. In
advances in neural information processing systems, pages 856–864, 2010.

[10] A. Karpathy, J. Johnson, and F.-F. Li. Visualizing and understanding recurrent networks. arXiv
preprint arXiv:1506.02078, 2015.

[11] M. Lichman. UCI machine learning repository, 2013.
[12] D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-based hyperparameter optimization

through reversible learning. arXiv preprint arXiv:1502.03492, 2015.
[13] B. van Merriënboer, D. Bahdanau, V. Dumoulin, D. Serdyuk, D. Warde-Farley, J. Chorowski,

and Y. Bengio. Blocks and fuel: Frameworks for deep learning. CoRR, abs/1506.00619, 2015.
[14] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Com-

puter Vision–ECCV 2014, pages 818–833. Springer, 2014.
[15] H. Zhao, B. Jiang, J. F. Canny, and B. Jaros. Same but different: Fast and high quality gibbs

parameter estimation. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’15, pages 1495–1502, New York, NY, USA,
2015. ACM.

5

	BIDMach: high-performance, customized machine learning framework
	Architecture for interactive modeling
	Mixin functions as secondary criteria
	Controlling the learning schedule
	Client-Server architecture

	Visual interface
	Use Case
	Scaling to deep neural network
	Conclusion

