
Schema Independent Relational Learning

Jose Picado Arash Termehchy Alan Fern
School of EECS, Oregon State University

Corvallis, OR 97331
{picadolj,termehca,afern}@eecs.oregonstate.edu

Abstract

Relational learning algorithms leverage the structure of a relational database to
find the definition of the target relation in terms of the existing relations in the
database. The same data may be represented under different relational structures,
i.e., schemas. Unfortunately, the accuracy of relational learning algorithms tend
to vary quite substantially over the choice of schema, both in terms of learning
accuracy and efficiency, which complicates their off-the-shelf application. We
introduce the property of schema independence of relational learning algorithms
and show that current algorithms are not schema independent on some common
variations in schema design. We further modify an existing algorithm and prove
that the modified version is schema independent.

1 Introduction
Relational learning algorithms attempt to learn concepts directly from a relational database, without
requiring the intermediate step of feature engineering [11, 9, 5]. Given a relational database and
training instances of a new target relation, relational learning algorithms leverage the structure of the
database and induce (approximate) relational definitions of the target relation in terms of existing
relations in the database. Nevertheless, people often represent the same data in different relational
structures, i.e., schemas [1, 12]. As an example, Table 1 shows some relations from two schemas
for the UW-CSE database, which is used as a common relational learning benchmark [13]. The
original schema was designed by relational learning experts. However, this schema is generally
discouraged in database community because the database system has to spend a long time and join
a relatively large number of relations to answer most queries over the databases with this schema
[12, 3, 1]. This schema is also relatively hard to understand for users. A database designer may
use schemas closer to the alternative in Table 1. Because each student stud has only one phase and
years, she will compose relations student, inPhase, and yearsInProgram. She may also combine
relations professor and hasPosition. This would result in shorter query execution time and easier
to understand and maintain schema [12]. Note that restructuring the UW-CSE database from the
original to alternative schema does not remove, modify, or add any data item in the database and
only changes their organization.

Unfortunately, the output of relational learning algorithms typically depend on the precise choice of
schema of the underlying database. For instance, let us use a classic relational learning algorithm
FOIL [11] to induce a definition of advisedBy(stud, prof) for each of the two structures of UW-
CSE data set in Table 1. FOIL learns the following definition over the original schema on Table 1:

advisedBy(X,Y )←inPhase(X, “post generals”), hasPosition(Y, “faculty”),

publication(P,X), publication(P, Y ).,

which covers 23 positive examples and 3 negative examples on the testing set. On the other hand,
FOIL learns the following definition over the alternative schema: advisedBy(X,Y )← false., which
covers 0 positive example and 32 negative examples. Intuitively, the definition learned over the
original schema better expresses the relationship between an advisor and advisee. Note that these
definitions are learned by FOIL with the exact same data under different schemas.

1



Original Schema Alternative Schema
student(stud) publication(title,person) professor(prof) student(stud,phase,years) courseLevel(crs,level)
inPhase(stud,phase) courseLevel(crs,level) hasPosition(prof,pos) professor(prof,pos) taughtBy(crs,prof,term)
yearsInProgram(stud,years) taughtBy(crs,prof,term) ta(crs,stud,term) publication(title,person) ta(crs,stud,term)

Table 1: Fragments of some schemas for UW-CSE data set. Primary key attributes are underlined.

Generally, there is no canonical schema for a particular set of content in practice and people of-
ten represent the same information in different schemas [1]. People may choose to represent their
data in one schema or another for several reasons. For example, it is generally easier to enforce
integrity constraints over highly normalized schemas [1]. On the other hand, because more nor-
malized schemas usually contain many relations, they are hard to understand and maintain. It also
takes a relatively long time to answer queries over database instances with such schemas [1]. Thus,
a database designer may sacrifice data quality and choose a more denormalized schema for its data
to achieve better usability and/or performance. Further, as the relative priorities of these objectives
change over time, the schema will also evolve.

In order to effectively use relational learning algorithms, i.e., deliver definitions for the target con-
cepts that a domain expert would judge as correct and relevant, users generally have to restructure
their databases to some proper schema. To make matters worse, these algorithms do not normally
offer any clear description of their desired schema and users have to rely on their own expertise
to find such schemas. Nevertheless, we ideally want our database analytics algorithms to be used
by ordinary users, not just experts. These users should not know the schema in which the data is
represented or tune the algorithm depending on the schema. Further, the structure of large-scale
databases constantly evolves, and we want to move away from the need for constant expert attention
to keep learning algorithms effective. One approach to solving the problem of schema dependence
is to run a learning algorithm over all possible schemas select the schema with the most accurate
answers. Nonetheless, computing all possible schemas of a DB is generally undecidable [4]. Even
if one limits the search space to a particular family of schemas, the number of possible schemas may
be extremely large [1, 12].

In this paper, we introduce the novel property of schema independence i.e., the ability to deliver
the same answers regardless of the choices of schema for the same data, for relational learning al-
gorithms. We propose a formal framework to measure the amount of schema independence of a
relational learning algorithm. Since none of the current algorithms are schema independent, we
leverage concepts from database literature to extend a relational learning algorithm, ProGolem [9],
and design a schema independent algorithm. Further details on our work and proofs for our theoret-
ical results can be found in [10].

2 Background

Let Attr be a set of symbols that contains the names of attributes [1]. Each relation R is a subset
of Attr. Let D be a countably infinite domain of values, e.g., string. A relation instance IR of
R assigns a finite relation IR ⊂ Dk to R with arity k. A schema R is a pair (R,Σ), where R is
a finite set of relations and Σ is a set of (logical) constraints. Each instance of R, IR, is a set of
instances of relations in R that satisfy Σ. Examples of constraints are functional dependencies (FD)
and inclusion dependencies (IND). FDA→ B in relationR, whereA,B ⊂ R, states that the values
of attribute set A uniquely determine the values of attributes in B in each tuple in every relation
instance IR. For example, FD stud → phase holds in relations inPhase of the original schema
and student of the alternative schema in Table 1. An IND between attribute C in relation R1 and
D in relation R2, denoted as R1[C] ⊆ R2[D], states that in all instances of IR1

and IR2
, values of

attribute C in any tuple of IR1
must also appear in attribute D of some tuple of IR2

. For example,
INDs student[stud] ⊆ inPhase[stud] and inPhase[stud] ⊆ student[stud] hold in the original
schema of Table 1. If both INDs R1[C] ⊆ R2[D] and R2[D] ⊆ R1[C] are in Σ, we denote them as
R1[C] = R2[D] for brevity. We call such IND an IND with equality. Given relation Ri, we call the
set of all relations Rj ∈ R such that there is an IND Ri[C] = Rj [D] in Σ, the inclusion class of Ri.

We denote the set of all Horn definitions over schema R by HDR. A relational learning algorithm
takes as input training data E and instance I and learns a hypothesis, i.e., definition, that, together
with I , entails E. Most relational learning algorithms limit their hypotheses to Horn definitions. An
algorithm may even restrict its hypothesis space to a subset of Horn definitions for various reasons,
such as efficiency. We denote the hypothesis space of relational algorithm A over schema R as

2



LAR. We define a relational learning algorithm A as a function A(I, E) that maps pairs of database
instance I and training data E to a hypothesis in LAR.

3 Framework
Intuitively, in order to learn semantically equivalent definitions over schemas R and S, we should
make sure R and S contain basically the same information. Transformation τ : R → S maps each
instance of R to an instance of S. If τ is bijective, then one is able to construct each instance in S
using the information in its corresponding instance in R and reconstruct the instance in R using its
corresponding instance in S. Hence, R and S represent the same information [6, 1]. Clearly, if τ is
bijective, τ−1 is also bijective.

We should also make sure that for every definition hR ∈ HDR, there is a semantically equivalent
definition in HDS , and vice versa. Otherwise, it is not reasonable to expect a learning algorithm
to learn semantically equivalent definitions over R and S. Let hR ∈ HDR be a definition over
schema R. We denote the result of applying hR over instance IR as hR(IR). Transformation
τ : R → S is definition preserving iff there exists a total function δτ : HDR → HDS such
that for every definition hR ∈ HDR and IR, hR(IR) = δτ (hR)(τ(IR)). In other words, one
can rewrite each definition over R as a definition over S. We call these definitions equivalent and
use ≡ to show their equivalency. We call function δτ a definition mapping for τ . For instance,
let R be the original schema and S be the alternative schema in Table 1, where τ : R → S . A
learning algorithm may learn the following definition over R: hR = advancedStudent(X) ←
inPhase(X, “post prelims”), yearsInProgram(X, “year 5”). If τ is definition preserving,
then there must exist a function δτ such that δτ (hR) = advancedStudent(X) ←
student(X, “post prelims”, “year 5”). Transformation τ is definition bijective iff both τ and
τ−1 are definition preserving. Clearly, in this case δτ−1 and δ−1τ are equal.

Definition 3.1 Algorithm A is schema independent under bijective and definition bijective transfor-
mation τ : R → S iff for all IR and IS and training data E:
• δτ is bijective over LAR and LAS .
• A(τ(IR), E) ≡ δτ (A(IR, E)).

The first condition in Definition 3.1 guarantees that algorithm A deals with equivalent hypothesis
spaces over schemasR and S. Algorithm A is schema independent under the set of transformations
iff it is schema independent under all its members.

4 Schema Independence of Relational Learning Algorithms
A widely used family of transformations is vertical composition/decomposition (composi-
tion/decomposition for short) [1], which moves attributes around the relations of a schema. The
transformation between the schemas in Table 1 is an example of vertical composition/decomposition.
Given some general and frequently appearing FD and IND constraints in schemasR and S, vertical
composition/decomposition betweenR and S is both bijective and definition bijective [10]. We ex-
plore the schema independence of current algorithms over this set of transformations in this section.

Top-down algorithms search the hypothesis space from general to specific. The hypothesis space
in top-down algorithms can be seen as a rooted directed acyclic graph in which nodes represent
clauses and each arc is the application of a refinement operator. We analyze the schema indepen-
dence properties of FOIL [11], an efficient and popular top-down algorithm that follows a greedy
best-first search strategy. However, the results that we show hold for all top-down algorithms no mat-
ter which search strategy they follow. The graph for most schemas may grow significantly [11, 8].
Hence, the construction and search over the graph may become too inefficient to be practical. To
be used in practice, algorithms restrict their search space, i.e. hypothesis space. A common method
is to restrict the maximum length of each clause in the graph [11, 8]. Intuitively, because composi-
tion/decompositions modify the number of relations in a schema, equivalent clauses over the original
and transformed schemas may have different lengths. Hence, this type of restrictions may result in
different hypothesis spaces. One may like to fix this problem by choosing different values for the
maximum lengths over the original and transformed schemas. The following theorem proves that it
is not possible to achieve equivalent hypothesis spaces over the original and transformed schemas
by restricting the maximum length of clauses no matter what values are used over the original and
transformed schemas. Let τ : R → S be a vertical composition/decomposition.

3



Theorem 4.1 There is no definition mapping δτ for τ such that δτ is bijective over LFOILR and
LFOILS .
One may modify FOIL so that, under some conditions, there exists a bijective definition mapping
between hypothesis spaces over different schemas [10]. However, the modified of FOIL version
has to evaluate clauses with rather large number of relations over all the training data. Since most
of these clauses are already minimal, the algorithm may need to join large number of relations
to evaluate each candidate clause. Hence, the learning may be very slow and not practical over
relatively large databases. Further, FOIL traverses the graph, evaluates a set candidate clauses in the
graph, and returns the most promising clause. Hence, to be schema independent, the algorithm must
evaluate clauses at the same order over equivalent schemas. One of the operations of (modified)
FOIL is assigning variables to attributes in the newly added relations in the current clause. It is not
clear how FOIL can assign variables to attributes such that it maintains the same order of clauses
over equivalent schemas without strong assumptions about the schemas, such as strong universal
relation and unique attribute role assumptions [1]. Hence, the generate and test approach used in
top-down algorithms like FOIL is generally at odds with schema independence.

Bottom-up algorithms search the hypothesis space from specific to general. In [10], we prove that
current bottom-up algorithms are not schema independent. In this paper, we describe an extension
to the bottom-up algorithm ProGolem [9], which is able to achieve schema independence. Given
a positive example, bottom-up algorithms attempt to find the most specific clause in the hypothesis
space that covers the example, relative to the database instance. This hypothesis is called the bottom
clause. Then, they apply generalization operators on one or more of these bottom clauses. Let ⊥e,I
be the bottom clause associated with example e, relative to the database instance I . An algorithm
for computing bottom clauses using inverse entailment is given in [8]. This algorithm takes as
input the parameter depth, which specifies the maximum depth of any term in the bottom clause.
Unfortunately, using the depth parameter does not result in equivalent bottom clauses associated with
the same example, relative to equivalent instances of schemas that represent the same information.
This is because different schemas require different depth values for equivalent clauses.

We propose the following modifications to the algorithm for generating bottom clauses. Given
an input example, the algorithm creates the head of the clause by adding a literal with the same
predicate name as the example, and with constants replaced by variables. A hash table is kept to
map constants to variables. In each iteration, the algorithm looks for ground atoms in the database
that contain constants stored in the hash table. For each ground atom, the algorithm creates a new
literal with the same predicate name as the atom, and with (some) constants replaced by either
variables specified by the hash table or new variables. If the newly created literal is not already in
the clause, it is added. Then, the algorithm applies a modified version of the Chase algorithm [1].

Assume that the algorithm is generating the bottom clause relative to I . Assume that the algorithm
selects relation Ri and adds a literal Li to the bottom clause based on some tuple ti of relation Ri.
Let L be an inclusion class of Ri. For each constraint Ri[Āi] = Rk[Āk] between the members of
L, the algorithm checks all tuples of relation Rk that share join attributes with ti. For each tuple,
the algorithm creates a literal Lk and assigns variables in the same way as it is done in the original
algorithm. If there is no existing literal in the clause that has the same relation name and same
old variables as Lk (only differs in new variables), then Lk is added to the clause. The algorithm
ensures that the corresponding attributes in Āi and Āk are assigned the same variables. Because this
version of Chase algorithm is terminal and enforces the available INDs with equality to the clause,
the resulting clause is equivalent to the input clause [1].

We also propose a modification of the algorithm so that the stopping condition is based on a pa-
rameter called maxvars. This parameter indicates the maximum number of (distinct) variables in
a bottom clause before starting a new iteration of the algorithm. At the end of each iteration, the
algorithm checks the number of distinct variables contained in the bottom clause. If this number is
less than the parameter maxvars, then the algorithm continues to the next iteration. Otherwise, the
algorithm stops. Let τ : R → S be a composition/decomposition. Let I and J be instances of R
and S, respectively, such that τ(I) = J .
Theorem 4.2 Let ⊥e,I and ⊥e,J be bottom clauses associated with e relative to I and J , respec-
tively, generated by the algorithm described above. Then, ⊥e,I≡⊥e,J .
ProGolem is based on the asymmetric minimal general generalization (armg) operator, which is a
generalization operator. ProGolem considers bottom clauses as ordered clauses. Therefore, to ensure

4



that the algorithm is schema independent, we must force clauses to have an equivalent order. One
may use the content of the database instance to establish an order between inclusion classes, which
is preserved under composition/decomposition. Let us define the natural join over an inclusion class
in schemaR as the join of all relations inR using their attributes that appear in INDs with equality.
According to [10], τ does not join the relations from different inclusion classes in R. Hence, one
may use the natural joins over inclusion classes to define an order between inclusion classes in a
database, which is preserved over all composition/decomposition transformations of the database.
In this paper, we assume that equivalent bottom clauses have an equivalent order.

Theorem 4.3 The armg operator is schema independent under composition/ decomposition.

We showed that we are able to get equivalent bottom clauses associated with the same example,
relative to equivalent instances of schemas that represent the same information. We also showed that
the armg operator is schema independent. We denote by ProGolem+Chase the extended version of
ProGolem that employs the modified bottom clause construction algorithm described above.

Corollary 4.4 ProGolem+Chase is schema independent under composition/ decomposition.

Query-based algorithms learn exact definitions by asking queries to an oracle , e.g., whether a
data item belongs to the target concept [7, 2]. Because query-based algorithms follow a different
learning model, Definition 3.1 is not suited for evaluating their schema (in)dependence. Query-
based algorithms are theoretically evaluated by their query complexity – the asymptotic number of
queries asked by the algorithm [7]. Therefore, we analyze the impact of schema transformations on
the query complexity of these algorithms. We show that that a popular query-based algorithm called
A2 [2] has drastically different asymptotic behavior over composition/decomposition. Specifically,
we prove that the lower bound on the query complexity of A2 under one schema is greater than the
upper bound on its query complexity under another schema.

Theorem 4.5 Let Ω(f)R and O(g)R be the lower bound and upper bound, respectively, on the
query complexity of A2 for all target relations under schema R, where f and g are functions of
properties ofR. Then, there is a composition/ decomposition ofR, S, such that Ω(f)R > O(g)S .

5 Empirical Results
Table 2 shows the results of learning the definitions for the advisedBy(stud, prof) and
femaleActor(actor) relations over the UW-CSE and IMDb databases, respectively, using well-
known algorithms. Our results indicate that these algorithms generally return different definitions
with different degrees of effectiveness over different schemas of the same data. Although ProGolem
seems to be schema independent over the UW-CSE database, its results vary with the schema over
IMDb. ProGolem+Chase returns the same results over all schemas of both data sets and is generally
as effective as ProGolem.

UW-CSE IMDb
Algorithm Metric Original 4NF Denorm. 1 Denorm. 2 Original Single Lookup

FOIL Precision 0.91 0.40 0.41 0.61 0.63 0.60
Recall 0.73 0.44 0.55 0.92 0.43 0.44

ProGolem Precision 0.86 0.86 0.86 0.86 0.89 0.98
Recall 0.92 0.92 0.92 0.92 0.34 0.30

ProGolem+Chase Precision 0.86 0.98
Recall 0.92 0.30

Table 2: Results of learning relations over the UW-CSE (left) and IMDb (right) databases.

6 Conclusion
We defined the property of schema independence for relational learning and proved that current
relational learning algorithms are not schema independent. We used the schema constraints to extend
an existing algorithm to be schema independent under a widely used variation in schema design. We
believe that this paper initiates some exciting theoretical investigations on the impact of database
representation on the quality of learning concepts from the database.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases: The Logical Level. Addison-
Wesley, 1994.

5



[2] M. Arias, R. Khardon, and J. Maloberti. Learning Horn expressions with LOGAN-H. J. Mach.
Learn. Res., 8:549–587, Dec. 2007.

[3] R. Fagin. Normal Forms and Relational Database Operators. In SIGMOD, 1979.
[4] W. Fan and P. Bohannon. Information Preserving XML Schema Embedding. TODS, 33(1),

2008.
[5] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT Press, 2007.
[6] R. Hull. Relative Information Capacity of Simple Relational Database Schemata. SICOMP,

15(3), 1986.
[7] R. Khardon. Learning function-free Horn expressions. Machine Learning, 37(3):241–275,

1999.
[8] S. Muggleton. Inverse Entailment and Progol. New Generation Computing, Special issue on

Inductive Logic Programming, 13:245–286, 1995.
[9] S. Muggleton, J. C. A. Santos, and A. Tamaddoni-Nezhad. ProGolem: A System Based on

Relative Minimal Generalisation. In ILP, volume 5989, 2009.
[10] J. Picado, A. Termehchy, and A. Fern. Schema independent relational learning. Technical

Report, arXiv:1508.03846, 2015.
[11] J. R. Quinlan. Learning Logical Definitions From Relations. Machine Learning, 5, 1990.
[12] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill, 2002.
[13] M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-2):107–

136, Feb. 2006.

6


	Introduction
	Background
	Framework
	Schema Independence of Relational Learning Algorithms
	Empirical Results
	Conclusion

