
SparkNet: Training Deep Networks in Spark

Philipp Moritz, Robert Nishihara, Ion Stoica, Michael I. Jordan
Electrical Engineering and Computer Science

University of California
Berkeley, CA 94720

{pcmoritz,rkn,istoica,jordan}@eecs.berkeley.edu

Abstract

Training deep networks is a time-consuming process, with networks for ob-
ject recognition often requiring multiple days to train. For this reason, lever-
aging the resources of a cluster to speed up training is an important area of
work. However, widely-popular batch-processing computational frameworks
like MapReduce and Spark were not designed to support the asynchronous and
communication-intensive workloads of existing distributed deep learning systems.
We introduce SparkNet, a framework for training deep networks in Spark. Our im-
plementation includes a convenient interface for reading data from Spark RDDs,
a Scala interface to the Caffe deep learning framework, and a lightweight multi-
dimensional tensor library. Using an extremely simple parallelization scheme for
stochastic gradient descent, SparkNet scales well with the cluster size and toler-
ates high-latency communication. Furthermore, it is easy to deploy and use with
no parameter tuning, and it is compatible with existing Caffe models. We report
results on the ImageNet Large Scale Visual Recognition Challenge.

1 Introduction

Deep learning has advanced the state of the art in a number of application domains. Many of the
recent advances involve fitting large models (often several hundreds megabytes) to larger datasets
(often hundreds of gigabytes). Given the scale of these optimization problems, training can be time-
consuming, often requiring multiple days on a single GPU using stochastic gradient descent (SGD).
For this reason, much effort has been devoted to leveraging the computational resources of a cluster
to speed up the training of deep networks (and more generally to perform distributed optimization).

Many attempts to speed up the training of deep networks rely on asynchronous, lock-free optimiza-
tion (often asynchronous SGD) [3, 1]. This paradigm uses a parameter server [9, 5], which holds the
latest model parameters in memory and serves them to the workers upon request. The nodes then
compute gradients with respect to these parameters on a minibatch drawn from the local data shard.
These gradients are shipped back to the server, which updates the model parameters.

At the same time, batch-processing frameworks enjoy widespread usage and have been gaining in
popularity. Beginning with MapReduce [2], a number of frameworks for distributed computing
have emerged to make it easier to write distributed programs that leverage the resources of a clus-
ter [14, 6, 11]. These frameworks have greatly simplified many large-scale data analytics tasks.
However, state-of-the-art deep learning systems rely on custom implementations to facilitate their
asynchronous, communication-intensive workloads. One reason is that popular batch-processing
frameworks [2, 14] are not designed to support the workloads of existing deep learning systems.
SparkNet implements a scalable, distributed algorithm for training deep networks that lends itself to
batch computational frameworks such as MapReduce and Spark and works well out-of-the-box in
bandwidth-limited environments. An extended version of this paper appears in Moritz et al. [10].

1



class Net {

def Net(netParams: NetParams): Net

def setTrainingData(data: RDD[(NDArray,Int)])

def setValidationData(data: RDD[(NDArray,Int)])

def train(numSteps: Int)

def test(numSteps: Int): Float

def setWeights(weights: WeightCollection)

def getWeights(): WeightCollection

}

Listing 1: SparkNet API

The benefits of integrating model training with existing batch frameworks are numerous. Much of
the difficulty of applying machine learning has to do with obtaining, cleaning, and processing data as
well as deploying models and serving predictions. For this reason, it is convenient to integrate model
training with the existing data-processing pipelines that have been engineered in today’s distributed
computational environments. Furthermore, this approach allows data to be kept in memory from
start to finish, whereas a segmented approach requires writing to disk between operations.

We emphasize that the hardware requirements of our approach are minimal. Whereas many ap-
proaches to the distributed training of deep networks involve heavy communication (often commu-
nicating multiple gradient vectors for every minibatch), our approach broadcasts model parameters
only once every minute or so. For this reason, we can easily deploy our algorithm on clusters that
are not optimized for communication. Our implementation works well out-of-the box on a five-node
EC2 cluster in which broadcasting and collecting model parameters (several hundred megabytes per
worker) takes on the order of 20 seconds. We achieve this by providing a simple algorithm for par-
allelizing SGD that involves minimal communication and lends itself to straightforward implemen-
tation in batch computational frameworks. Our goal is not to outperform custom implementations
but rather to propose a system that can be easily implemented in popular batch frameworks and that
performs nearly as well as what can be accomplished with specialized frameworks.

Some work has been done to train deep networks in batch-processing frameworks [4, 3, 12]. How-
ever, these approaches are based on parallelizing the gradient computation over individual mini-
batches (or over the full dataset) and are thus extremely communication intensive. Furthermore, the
benefit of increasing the size of the minibatch in SGD diminishes rapidly with the minibatch size.

In the bandwidth-limited setting, Zinkevich et al. [16] analyze a simple algorithm for convex opti-
mization that is easily implemented in the MapReduce framework and can tolerate high-latency com-
munication between machines. Zhang and Jordan [15] propose a scheme for parallelizing stochastic
optimization algorithms along with a Spark implementation.

2 Implementation

Here we describe our implementation of SparkNet. SparkNet builds on Apache Spark [14] and the
Caffe deep learning library [7]. In addition, we use Java Native Access for accessing Caffe data and
weights natively from Scala and the ScalaBuff implementation of Google Protocol Buffers to allow
dynamic construction of Caffe networks at runtime.

The Net class wraps Caffe and exposes a simple API containing the methods shown in Listing 1.
The NetParams type specifies a network architecture, and the WeightCollection type is a
map from layer names to weights. It allows the manipulation of network components and the storage
of weights and outputs for individual layers. To facilitate manipulation of data and weights without
copying memory from Caffe, we implement the NDArray class, which is a lightweight multi-
dimensional tensor library. We describe the NDArray API in Listing 4. One benefit of building
on Caffe is that any existing Caffe model definition or solver file is automatically compatible with
SparkNet. There is a large community developing Caffe models and extensions, and these can

2



val netParams = NetParams(

RDDLayer("data", shape=List(batchsize, 1, 28, 28)),

RDDLayer("label", shape=List(batchsize, 1)),

ConvLayer("conv1", List("data"), kernel=(5,5), numFilters=20),

PoolLayer("pool1", List("conv1"), pool=Max, kernel=(2,2), stride=(2,2)),

ConvLayer("conv2", List("pool1"), kernel=(5,5), numFilters=50),

PoolLayer("pool2", List("conv2"), pool=Max, kernel=(2,2), stride=(2,2)),

LinearLayer("ip1", List("pool2"), numOutputs=500),

ActivationLayer("relu1", List("ip1"), activation=ReLU),

LinearLayer("ip2", List("relu1"), numOutputs=10),

SoftmaxWithLoss("loss", List("ip2", "label"))

)

Listing 2: Example network specification in SparkNet

var trainData = loadData(...)

var trainData = preprocess(trainData).cache()

var nets = trainData.mapPartitions(data => {

var net = Net(netParams)

net.setTrainingData(data)

net})

var weights = initialWeights(...)

for (i <- 1 to 1000) {

var broadcastWeights = broadcast(weights)

nets.map(net => net.setWeights(broadcastParams.value))

weights = nets.map(net => {

net.step(50)

net.getWeights()}).mean() // a mean of WeightCollection objects

}

Listing 3: Distributed training example

easily be used in SparkNet. By building on top of Spark, we inherit the advantages of modern batch
computational frameworks. These include the high-throughput loading and preprocessing of data
and the ability to keep data in memory between operations. In Listing 2, we give an example of how
network architectures can be specified in SparkNet. In addition, model specifications or weights
can be loaded directly from Caffe files. An example sketch of code that uses our API to perform
distributed training is given in Listing 3.

2.1 Parallelizing SGD

To perform well in bandwidth-limited environments, we recommend a parallelization scheme for
SGD that requires minimal communication. This approach is not specific to SGD. Indeed, SparkNet
works out of the box with any Caffe solver.

The parallelization scheme is described in Listing 3. Spark consists of a single master node and a
number of worker nodes. The data is split among the Spark workers. In every iteration, the Spark
master broadcasts the model parameters to each worker. Each worker then runs SGD on the model
with its subset of data for a fixed number of iterations τ (we use τ = 50 in Listing 3) or for a
fixed length of time, after which the resulting model parameters on each worker are sent to the
master and averaged to form the new model parameters. We recommend initializing the network by
running SGD for a small number of iterations on the master. In our experiments, we use 500 training
iterations, which takes about 17 minutes.

The standard approach to parallelizing each gradient computation requires broadcasting and collect-
ing model parameters (hundreds of megabytes per worker and gigabytes in total) after every SGD

3



class NDArray {

def NDArray(data: Array[Float], shape: Array[Int]): NDArray

def subArray(offsets: Array[Int], shape: Array[Int]): NDArray

def slice(dim: Int, index: Int): NDArray

def set(indices: Array[Int], value: Float)

def get(indices: Array[Int]): Float

}

Listing 4: NDArray API

0 5 10 15 20

hours

0

5

10

15

20

25

30

35

40

45

a
cc

u
ra

cy

1 GPU
3 GPUs
5 GPUs
10 GPUs

(a) This shows the scaling of SparkNet with 3, 5,
and 10 GPUs and τ = 50. The 1 GPU plot was
obtained by running Caffe with no communica-
tion, whereas the other experiments communicate
parameters between machines incurring an over-
head of about 20 seconds per synchronization.

0 2 4 6 8 10

hours

0

5

10

15

20

25

30

35

40

45

a
cc

u
ra

cy

20 iterations
50 iterations
100 iterations
150 iterations

(b) This figure shows the dependence of the par-
allelization scheme described in Section 2.1 on τ .
Each experiment was run with N = 5 workers.
This figure shows that there is no need to collect
and broadcast the model more frequently than ev-
ery 50 iterations in our bandwidth-limited cluster.

update, which occurs tens of thousands of times during training. On our EC2 cluster, each broadcast
and collection takes about twenty seconds, putting a bound on the speedup that can be expected
using this approach without better hardware or without partitioning models across machines. Our
approach broadcasts and collects the parameters a factor of τ times less for the same number of
iterations. In our experiments, we set τ = 50, but other values seem to work about as well.

3 Experiments

To explore the scaling behavior of our algorithm and implementation, we train the default Caffe
model of AlexNet [8] on the ImageNet Large Scale Visual Recognition Challenge [13]. We run
SparkNet with N = 3, 5, and 10 GPUs and plot the results in Figure 1a. For comparison, we
also run Caffe on the same cluster with a single GPU and no communication overhead to obtain
the N = 1 plot. To measure the speedup, we compare the wall-clock time required to obtain an
accuracy of 45%. With 1 GPU and no communication overhead, this takes 55.6 hours. With 3, 5,
and 10 GPUs, SparkNet takes 22.9, 14.5, and 12.8 hours, giving speedups of 2.4x, 3.8x, and 4.4x.

Furthermore, we explore the dependence of the parallelization scheme described in Section 2.1 on
the parameter τ which determines the number of iterations of SGD that each worker does before
synchronizing with the other workers. These results are shown in Figure 1b. Note that in the
presence of stragglers, it suffices to replace the fixed number of iterations τ with a fixed length of
time, but in our experimental setup, the timing was sufficiently consistent and stragglers did not
arise. All experiments were run on EC2 using a cluster of five g2.8xlarge nodes. The single GPU
experiment in Figure 1a was trained on a single GPU node with no communication overhead.

4



References
[1] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project Adam: Building an efficient

and scalable deep learning training system. In 11th USENIX Symposium on Operating Systems
Design and Implementation, pages 571–582, 2014.

[2] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Commu-
nications of the ACM, 51(1):107–113, 2008.

[3] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, Q. V. Le, and A. Y. Ng. Large scale distributed deep networks. In Advances in Neural
Information Processing Systems, pages 1223–1231, 2012.

[4] P. Farber and K. Asanovic. Parallel neural network training on Multi-Spert. In Algorithms and
Architectures for Parallel Processing, 1997. ICAPP 97., 1997 3rd International Conference
on, pages 659–666. IEEE, 1997.

[5] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger, and E. P.
Xing. More effective distributed ML via a stale synchronous parallel parameter server. In
Advances in Neural Information Processing Systems, pages 1223–1231, 2013.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data-parallel pro-
grams from sequential building blocks. In Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems, pages 59–72, 2007.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Dar-
rell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM
International Conference on Multimedia, pages 675–678. ACM, 2014.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105,
2012.

[9] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita,
and B.-Y. Su. Scaling distributed machine learning with the parameter server. In 11th USENIX
Symposium on Operating Systems Design and Implementation, pages 583–598, 2014.

[10] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan. SparkNet: Training deep networks in
Spark. arXiv preprint arXiv:1511.06051, 2015.

[11] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: a timely
dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 439–455. ACM, 2013.

[12] C. Noel, J. Shi, and A. Feng. Large scale distributed deep learning on Hadoop clus-
ters, 2015. URL http://yahoohadoop.tumblr.com/post/129872361846/
large-scale-distributed-deep-learning-on-hadoop.

[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recog-
nition Challenge. International Journal of Computer Vision, pages 1–42, 2015.

[14] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster computing
with working sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing, volume 10, page 10, 2010.

[15] Y. Zhang and M. I. Jordan. Splash: User-friendly programming interface for parallelizing
stochastic algorithms. arXiv preprint arXiv:1506.07552, 2015.

[16] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized stochastic gradient descent. In
Advances in Neural Information Processing Systems, pages 2595–2603, 2010.

5

http://yahoohadoop.tumblr.com/post/129872361846/large-scale-distributed-deep-learning-on-hadoop
http://yahoohadoop.tumblr.com/post/129872361846/large-scale-distributed-deep-learning-on-hadoop

	Introduction
	Implementation
	Parallelizing SGD

	Experiments

