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Abstract

Scalable distributed dataflow systems have recently experienced widespread adop-
tion, with commodity dataflow engines such as Hadoop and Spark, and even
commodity SQL engines routinely supporting increasingly sophisticated analytics
tasks (e.g., support vector machines, logistic regression, collaborative filtering).
However, these systems’ synchronous (often Bulk Synchronous Parallel) dataflow
execution model is at odds with an increasingly important trend in the machine
learning community: the use of asynchrony via shared, mutable state (i.e., data
races) in convex programming tasks, which has—in a single-node context—
delivered noteworthy empirical performance gains and inspired new research into
asynchronous algorithms. In this work, we attempt to bridge this gap by evaluating
the use of lightweight, asynchronous state transfer within a commodity dataflow
engine. Specifically, we investigate the use of asynchronous sideways informa-
tion passing (ASIP) that presents single-stage parallel iterators with a Volcano-
like intra-operator iterator that can be used for asynchronous information passing.
We port two synchronous convex programming algorithms, stochastic gradient de-
scent and the alternating direction method of multipliers (ADMM), to use ASIPs.
We evaluate an implementation of ASIPs within on Apache Spark that exhibits
considerable speedups as well as a rich set of performance trade-offs in the use of
these asynchronous algorithms.

1 Introduction

The recent rise of large-scale distributed dataflow frameworks has enabled widespread adoption of
increasingly sophisticated analytics tasks at scale [1, 24, 14, 4, 10]. The last decade has seen consid-
erable research and industrial effort put towards understanding how to integrate complex analytics
and learning tasks into programmer workflows [25, 12], existing system architectures [6, 8], and
new cluster compute frameworks [22, 13].

Simultaneously, in the machine learning community, the statistical nature of many of these analytics
tasks has led to increasing interest in exploiting asynchrony during computation. That is, a range of
recent theoretical results has demonstrated that removing synchronization within an emerging class
of problems can yield surprising improvements in performance. These problems can be solved via
highly concurrent update mechanisms that expose, in effect, read-write race conditions [5, 16, 20].
As an example, Recht et al. have demonstrated that stochastic gradient descent—typically imple-
mented via serializable locking (and only proven to converge under serial execution)—can be made
robust against asynchronous processing over shared, mutable model state: in effect, when conflicts
are rare (enough), (some) staleness and data races will not affect statistical correctness [19]. Em-
pirically, on single-node systems, these asynchronous algorithms have yielded order-of-magnitude
improvements in performance and are the subject of active research, even within the systems com-
munity [6, 26, 27].
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Unfortunately, these two trends stand in opposition. Architecturally, commodity distributed dataflow
systems such as Hadoop and Spark are optimized for coarse-grained (often bulk synchronous par-
allel [23]) data transformations and are not designed to natively provide the fine-grained commu-
nication required for efficient asynchronous analytics tasks. Consequently, evaluation of these new
asynchronous algorithms have been largely confined to single-node, multi-processor (and NUMA)
context [26, 19]: it is relatively unknown how the increased latency of a distributed environment im-
pacts their performance and correctness guarantees. The technological trajectory outlined by recent
research suggests a divide between widely-deployed dataflow-based cluster compute frameworks
and specialized asynchronous optimization mechanisms, which largely rely on a shared memory
abstraction [15, 9, 21].

In this work, we study this disconnect by addressing two key questions. First, can increasingly
ubiquitous dataflow systems be easily adapted to support asynchronous analytics tasks? Second, in
a distributed dataflow environment, what are the benefits (and costs) of these asynchronous algo-
rithms compared with existing synchronous implementations? We present the design and evaluation
of a simple dataflow operator that i.) enables implementation of asynchronous complex statistical
analytics (primarily, convex programming tasks, including Support Vector Machines and Logistic
Regression [3]) yet ii.) is implementable using a commodity dataflow engine (Apache Spark). We
use this operator to study the implications of bringing distributed asynchrony to two classic convex
programming procedures: stochastic gradient descent (SGD) [3] and alternating direction method
of multipliers (ADMM) [2]. This juxtaposition of traditional BSP systems and algorithms with their
incipient asynchronous counterparts yields an opportunity to study the differences between these
paradigms.

To address the first, architectural question, we codify and exploit a common pattern in asynchronous
analytics tasks. We observe that, on a single machine, these tasks can be cast as single-stage parallel
dataflow, with shared memory acting as a communication channel between operators. Therefore,
to allow asynchronous data sharing during distributed operation, we introduce the Asynchronous
Sideways Information Passing (ASIP) pattern, in which a set of shared-nothing, data-parallel oper-
ators are provided access to a special communication channel, called a ASIP iterator, that allows
fine-grained communication across concurrent operator instances. The ASIP iterator abstracts the
details of distribution and routing (similar to the exchange operator [7] and allows fine-grained com-
munication across operators as in sideways information passing [11]. This enables our target convex
programming routines to take advantage of asynchrony within more general purpose distributed
dataflow systems. We present the design and implementation of a prototype ASIP ASIP iterator
system in Apache Spark and discuss the challenges arising from fault tolerance and scheduling.
Notably, in our implementation, the bulk of data transfer and computation occurs via the primary
iterator interface, exploiting Apache Spark’s strength of efficient parallel computation, while, in the
convex optimization routines we study, the ASIP iterator acts as a “control plane” for facilitating
fine-grained model synchronization.

To address the second, more algorithmic question, we evaluate the costs and benefits of distributed,
asynchronous execution within two common analytics tasks. We first extend BSP SGD (as provided
natively in Spark via MLlib [22]) to ASIP gradient descent, using the ASIP iterator to ship fine-
grained delta-encoded model updates between operators (approximating a well-studied but—to our
knowledge—seldom empirically evaluated algorithm known as dual averaging [5]). We also extend
BSP ADMM to the ASIP setting, using the ASIP iterator to ship actual models between parallel
operators and leveraging Escrow-like divergence control [18, 17] to bound drift imposed by asyn-
chrony. Across a range of learning tasks, both ASIP algorithms demonstrate speedups of up to two
orders of magnitude compared to their BSP counterparts. However, the two ASIP algorithms evince
a careful trade-off between speed and safety: the fast delta updates of ASIP GD are remarkably
efficient when data is well-behaved but can cause instability in pathological workloads. In contrast,
ASIP ADMM behaves well across workloads but is generally slower. To the best of our knowledge,
this evaluation is the first apples-to-apples comparison of these techniques at scale in a distributed
setting and on real-world data.

In summary, we make the following contributions:

• We present a distributed dataflow operator providing intra-operator sideways information
passing that is sufficient to implement asynchronous convex optimization routines within
existing dataflow systems.
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• We present the design and implementation of two asynchronous convex programming
routines—gradient descent and ADMM—within the ASIP operator, drawing on the the-
oretical machine learning literature when possible.

• We evaluate the costs and benefits of asynchronous convex programming via ASIP within
Apache Spark and demonstrate improvements in convergence rates via the use of asyn-
chrony across a range of workloads.

Full text on arXiv; preprint at: http://db.cs.berkeley.edu/asip/asip-arxiv-preview.pdf
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[26] C. Zhang and C. Ré. DimmWitted: A study of main-memory statistical analytics. In VLDB, 2014.

[27] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A fast parallel sgd for matrix factorization in shared memory systems.
In RecSys, 2013.

3


	Introduction

