PD?F: Running a Parameter Server within a
Distributed Dataflow Framework

Nan Zhu Lei Rao
School of Computer Science Huawei Technologies Co. Ltd.
McGill University Santa Clara, CA, US
Montreal, QC, Canada ruby.raoGhuawei.com

nan.zhu@mail .mcgill.ca

Xue Liu
School of Computer Science
McGill University
Montreal, QC, Canada
xueliu@cs.mcgill.ca

Abstract

A Parameter Server makes it easy to adapt machine learning algorithms to
large-scale applications. It schedules the workload of storing and updating
large volume of parameters to distributed servers. It also accommodates
flexible consistency requirements to reduce the communication overhead.
However, due to the design and deployment of parameter server, important
issues arise. It brings additional operational cost, imposes unnecessary
overheads to developers and has been inconvenient to the user when working
with other data processing systems. To solve these problems, we propose
PD?F, a non-intrusive approach to run Parameter server as an application
of the Distributed Dataflow Framework. Preliminary experimental results
demonstrate the effectiveness of our proposed solution.

1 Introduction

The growing scale and importance of big data have driven the development and deployment
of distributed dataflow frameworks. General-purpose distributed dataflow frameworks, like
Hadoop [3], Spark [14], have gained momentum by supporting data-intensive applications.
In recent years, with the emerging deep learning technologies, machine computing has even
surpassed human experts in certain applications [I3]. However, in many scenarios, we do
not only need to handle a significant amount of input data but also need to deal with the
massive model size containing millions to billions of parameters. To handle these com-
plexities in both the data dimension and the model dimension, the parameter server (PS)
framework [6], 8 2, T2, [7] has been considered as an efficient solution to scale machine
learning algorithms. PS distributes the workload of storing and updating the model pa-
rameters across multiple servers so that it mitigates the overhead on a single node. Some
PSs apply loose synchronization constraint on the parameter value to further reduce the
communication overhead [6] [7].

While PS and dataflow frameworks enhance our ability to handle a variety of large-scale data
processing problems, there are several critical issues as they move forward as two separate
systems. (1) Operational Cost: the maintenance and operation of two separate systems
evidently take more labor and hardware resources than operating a single system and hence

these lead to a higher operational cost; (2) Unnecessary Overheads: Existing dataflow
frameworks have already developed mature solutions for multi-tenant management, authen-
tication, etc., however having two separate development tracks still requires the developers
of PSs to repeat the work done in the community and hence it results in unnecessary over-
heads; (3) Inconvenient to use: PS has been developed as a specific system for machine
learning problems. Thus, it relies on dataflow framework for data preprocessing. When
researchers and engineers are actively trying different combinations of features, they have
to refer to two separate frameworks each time they need to change the input data format.
This may lead to more operation time and errors.

To address the above issues, we design a system, PD?F, running PS as an application
within the Distributed Dataflow Framework. We implement it as a third-party library of a
widely used dataflow framework, Spark [14]. We expose the APIs that are identical to the
original Spark machine learning library. The main contribution of this paper is threefold:

e We separate the task scheduling logic like Stale Synchronous Parallel
(SSP) [6] or Dependent Task [7] from the dataflow framework scheduler.
The scheduler of dataflow frameworks handles resource allocation and task schedul-
ing as a whole. It assigns tasks wrapping user-defined logic to distributed servers
when there are available computing resources. Upon the completion of logic, it
reclaims the resources. The “Resource Manager and Scheduler as a whole” design
prevents us from controlling the synchronization of parameters in a more flexible
way. To solve this problem, we take the original framework scheduler as a resource
manager and have a “Coordinator” thread running aside to it to decide which tasks
shall run or stop.

e We introduce the “Stateful Task” to implement PS node and local pa-
rameter cache. Dataflow frameworks provide the high-level abstraction for data
processing and do not expose any internal state of the task to the user. The “state-
less” view of the task to the user makes it difficult to implement the PS instance
that maintains the parameters as the internal state. We use the ordinary task in
dataflow frameworks as the wrapper of PS instance, and expose the internal state,
i.e. parameters, via a message-based channel.

e We decouple the lifecycle of computing tasks in dataflow frameworks with
the input data. Considering about the lifecycle, a task in PS is with a more coarse
granularity. The task in PS takes a relatively larger chunk of data as input and
updates the parameters for several iterations before it stops. In contrast, dataflow
framework tasks are trending to be with the finer and finer granularity [I1]. They
take much smaller chunk of data and stop after they apply the user-defined function
to every element in the chunk for a single round. The binding between tasks’
lifecycle and input data prevents us from implementing a more flexible parameter
synchronization mechanism in PS, such as SSP. Our proposed solution addresses
this issue by allowing the tasks in dataflow frameworks to delegate the scheduling
of its lifecycle to the Coordinator, regardless of the size and the access pattern of
its input data.

2 Background

The mini-batch Stochastic Gradient Descent (SGD), especially its parallel version, has been
a popular gradient descent optimization method used in the large-scale machine learning
model training. In this section, we give an overview of how the parallel mini-batch SGD
is implemented in Spark. It serves as the background knowledge on why PS is an efficient
solution to train massive machine learning models.

Figure [1| shows the workflow of the mini-batch SGD in Spark [5]. The application in Spark
consists of two types of processes, a singleton Driver, which schedules tasks, and one or
more Ezecutors to execute the tasks. For each iteration, Spark samples the training dataset
as a mini-batch, which is partitioned to multiple servers. A computing task is started
for each partition to updates the gradient in parallel. The update of the gradients are
aggregated following a tree structure consisting of Executors and finally flow back to the

Driver. The iteration ends after the Driver has aggregated all updates. At the beginning of
each iteration, the driver broadcasts the updated gradients to all executors as the input for
the coming iteration.

The major problems in this implementation
are: 1) all parameters have to be collected
to a single node (Driver) and broadcasted e % ,,,,,,,, ‘:
again, this brings large single-node memory i ;

pressure and communication overhead when Executor |-+ ;
s, ———> Task Control Flow

the model size is very large; 2) the strict N o avadiont
constraint on the iteration progress makes | Aggregation Flow
the application vulnerable to the straggler
problem [4].

Executor

Partition 3

3 Design of PD2F Figure 1: Workflow of SGD in Spark

Figure [2| shows the components of PD?F
a PS application within Spark frameworkE[
PD?F consists of a scheduling module, Co-
ordinator, and two Spark jobs including Parameter Server job and Learning job.

3.1 Coordinator

As shown in Figure [2] the scheduling mod-
ule in our system, “Coordinator”, runs in
parallel with the Driver (i.e. Spark’s ap-

Executor

plication task scheduler). The Coordinator ‘ Driver ‘| }ﬂ _}m [o || " }
is the key to implement flexible parame- L =¥

ter synchronization mechanism in PS. We oo

partition the training data in distributed ncter taamton | | F— ‘
servers and launch a task for each parti- »:{aogée:ss | s |

tion to iteratively update the model param-
eters. The Coordinator tracks the iteration

number that the tasks work on for each [] compuing Taskof Parametrvo T esource Alocaton
partition. When the task finishes an iter- () compuingTaskofteamingon > Task Contol
ation, it inquires the Coordinator with its

just-finished iteration number (i.e. z). If Figure 2: PD2F Architecture

x — s < min(i), the Coordinator indicates

the task to continue the processing of the

next iteration, where s is the staleness bound and min(i) is the least iteration number over
all partitions. If 2 — s > min(i), the Coordinator schedules the task to release the resources
and stop. The Coordinator starts new Learning Jobs (Section after min(i) catches
up, ensuring that the stopped processing of the partition resume. With the design of
Coordinator, we provide a more flexible parameter synchronization mechanism.

3.2 Parameter Server Job

Parameter Server job starts “Stateful Task” maintaining the parameters in a distributed
fashion. Each “Stateful Task” acquires the resources (CPU and Memory) from Spark cluster
and keeps running until the end of PS application. “Stateful Task” delegates the state
maintenance to a memory-efficient entity, Actor [I] (as shown in Figure[2). When a stateful
task starts, it associates several actors with the CPU resources it acquires. Each actor
maintains a set of parameters and the only way to read/update parameters is to send
messages to the actor. When there is a message in the queue, the actor is attached to
CPU resources acquired by the task to execute the message processing logic. To ensure
that the parameter server actors are always available for parameter synchronization, we

IThere are proposals in the community about PS with Spark [9], however, it requires to modify
the Spark’s core implementation which is also the reason for its being rejected by the community.

guarantee that all tasks in Parameter Server Job must be running before the Coordinator
starts Learning job to train the model.

The mapping relationship from the parameters to the actor location is tracked by the Co-
ordinator and broadcasted to all servers so that the learning task can get the actor location
for parameter synchronization. We assign a unique ID to each actor and persist its state
(parameters) to the persistent storage system (e.g. HBase) for the fault-tolerance purpose.

3.3 Learning Job

The computing tasks in Learning Job update the parameters and synchronize with the
actors in the Parameter Server job. To implement the flexible consistency control model,
we decouple the task lifecycle and input data. Every task in Learning Job maintains
the iteration number it works on and the local cache for the parameter. With the iteration
number and the local parameter cache, we implement the flexible consistency model, Stale
Synchronous Parallel. At the end of each iteration, the task inquires the Coordinator to
decide whether it continues, i.e. whether its progress is faster than the slowest task for more
than s iterations. We support the following operations in the computing tasks of Learning
Job: 1) read_para(parameter_ids): retrieve the latest value of the parameters identified by
parameter_ids; 2) inc(parameter_ids, val): increase the value of the parameters identified
by parameter_ids with the value val, which can be negative; 3) sync(): synchronize the
local updates of parameters with all actors in Parameter Job involved by the outstanding

inc().

When a task working on the iteration i requests a parameter p by calling read_para(), it
first checks its local cache and compares the version of the parameter v with . If i —v < s,
it takes the cached value of the parameter, updates it and commits the updated parameter
by calling sync() after it finishes the current iteration; otherwise, it reads parameters of
interests from the remote PS actors.

4 Preliminary Evaluation

We implemented PD?F and evaluated it using the URL reputation dataset [10]. We used
logistic regression with SGD to classify 2,396,130 URLs into malicious and benign categories
according to 3,231,961 features given in the dataset. We compare PS with SSP synchroniza-
tion mechanism in PD?*F (with staleness boundary as 5 and 25) and Spark 1.4.1 in terms
of the rate of convergence and training time. We ran the experiments in a 4-servers cluster.
Three of them have Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (4 physical cores, 8 logical
cores with Hyper-Threading) and 16 GB RAM. The other one has Intel(R) Xeon(R) CPU
E5-2687W v3 @ 3.10GHz (10 physical cores, 20 logical cores with Hyper-Threading) and
32GB RAM. Each Spark Executor process is with 8G memory. We started 100 PS actors,
10 per task for Parameter Server job and the Learning job parallelism is 10. In total, we
run 50 iterations with the step size as 0.001.

Figure (3| shows the experimental results on
the rate of convergence. The figure demon-
strates the average loss value in the last ten
iterations. We observe that with the same
number of iterations, PD?F converged to
less loss value than Spark. In Table 1,
we show two metrics describing the classi-

fication accuracy of three execution mod- s

els. The dataset we used for evaluation P Mo”0
contains 33% positive instances, so that we

show the common evaluation metric, area Figure 3: Evaluation Results: we compare the
under ROC. as well as the area under PR, PS with SSP model implemented in PD?F with
which has t7he better capability to capture LR algorithm in Spark in terms of the rate of con-
the skewness in the dataset. From the ta- ‘o oon¢®

ble, we observe that PD?F performs better

0.7

loss value

Area under ROC Area under PR

PD?F (stale = 5) 0.9 0.81
PD?F (stale = 25) 0.88 0.79
Spark 0.85 0.74

Table 1: Comparison of Classification Accuracy

than Spark in correctly classify an URL under both of these two metrics. We attribute the
improvement of the accuracy to the feature of SSP. A computing task in SSP execution
model may lose updates made by the other tasks which are slower than it for less than s
iterations. Simultaneously, a computing task in SSP also gains the updates from the tasks
which are faster than it for less than s iterations. With the dataset used in our evaluation,
we obviously got more gains than loss.

To finish 50 iterations, these three systems spent nearly an identical amount of time, around
210s. To avoid the modification of the internal of Spark, we sacrificed several chances to
further optimize the system performance, e.g. the tasks started in the same executor cannot
have a shared and mutable memory space so that they cannot share the latest value of the
parameters with “process cache” [6].

5 Summary

We implement PD?F, a Parameter Server system within Distributed Dataflow Framework.
The proposed work incorporates the benefits brought by both the PS and Dataflow frame-
work computing paradigm: 1) By training a machine model with the PS paradigm, we
eliminate the single point performance bottleneck when synchronizing parameters in the
conventional dataflow framework; 2) With the support of flexible parameter synchronization
mechanism, i.e. SSP, we achieve the faster rate of convergence than the dataflow-based ma-
chine learning system; 3) PD?F is designed in a non-intrusive fashion so that we can easily
build a complete data processing pipeline covering dataflow-based Extract-Transformation-
Load and PS-based machine learning model training. In future, we will extend the work
to support more optimization algorithms in PD2F. At the same time, we will explore ap-
proaches to integrate existing PS libraries with the dataflow framework, using the design
philosophy we exhibited in this paper, to further improve the deployment efficiency and the
user experience of machine learning systems.

6 Acknowledgement

We are indebted to Tiangi Chen for insightful comments on several discussions about this
work.

References

[1] Gul A. Agha, Tan A. Mason, Scott F. Smith, and Carolyn L. Talcott. A foundation for
actor computation. J. Funct. Program., 7(1):1-72, January 1997.

[2] Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and Alexan-
der J. Smola. Scalable inference in latent variable models. In Proceedings of the Fifth
ACM International Conference on Web Search and Data Mining, WSDM ’12, pages
123-132, New York, NY, USA, 2012. ACM.

[3] Apache. Hadoop. http://hadoop.apache.org/.

[4] James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gregory R. Ganger, Garth
Gibson, Kimberly Keeton, and Eric Xing. Solving the straggler problem with bounded

http://hadoop.apache.org/

staleness. In Presented as part of the 14th Workshop on Hot Topics in Operating
Systems, Berkeley, CA, 2013. USENIX.

Spark Community. Spark stochastic gradient descent. http://spark.apache.org/
docs/latest/mllib-optimization.html#stochastic-gradient-descent-sgd.

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gib-
bons, Garth A Gibson, Greg Ganger, and Eric P Xing. More effective distributed ml via
a stale synchronous parallel parameter server. In C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 26, pages 1223-1231. Curran Associates, Inc., 2013.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In 11th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 14), pages 583-598, Broomfield, CO,
October 2014. USENIX Association.

Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and Alexander
Smola. Parameter server for distributed machine learning. In Big Learning NIPS
Workshop, 2013.

Qiping Li. A prototype of parameter server. https://issues.apache.org/jira/
browse/SPARK-6932.

Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Identifying
suspicious urls: An application of large-scale online learning. In Proceedings of the 26th
Annual International Conference on Machine Learning, ICML ’09, pages 681-688, New
York, NY, USA, 2009. ACM.

Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: Distributed,
low latency scheduling. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP 13, pages 69-84, New York, NY, USA, 2013.
ACM.

Alexander Smola and Shravan Narayanamurthy. An architecture for parallel topic
models. Proc. VLDB Endow., 3(1-2):703-710, September 2010.

Michael Thomsen. Microsoft’s deep learning project outperforms humans in
image recognition. http://www.forbes.com/sites/michaelthomsen/2015/02/19/

microsofts-deep-learning-project-outperforms-humans-in-image-recognition/.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings
of the 9th USENIX Conference on Networked Systems Design and Implementation,
NSDI'12, pages 2—2, Berkeley, CA, USA, 2012. USENIX Association.

http://spark.apache.org/docs/latest/mllib-optimization.html#stochastic-gradient-descent-sgd
http://spark.apache.org/docs/latest/mllib-optimization.html#stochastic-gradient-descent-sgd
https://issues.apache.org/jira/browse/SPARK-6932
https://issues.apache.org/jira/browse/SPARK-6932
http://www.forbes.com/sites/michaelthomsen/2015/02/19/microsofts-deep-learning-project-outperforms-humans-in-image-recognition/
http://www.forbes.com/sites/michaelthomsen/2015/02/19/microsofts-deep-learning-project-outperforms-humans-in-image-recognition/

	Introduction
	Background
	Design of PD2F
	Coordinator
	Parameter Server Job
	Learning Job

	Preliminary Evaluation
	Summary
	Acknowledgement

