
Asynchronous Distributed Data Parallelism for
Machine Learning

Zheng Yan, Yunfeng Shao
Shannon Lab, Huawei Technologies Co., Ltd.

Beijing, China, 100085
{yanzheng, shaoyunfeng}@huawei.com

Abstract

Distributed machine learning has gained much attention due to recent proliferation
of large scale learning problems. Designing a high-performance framework poses
many challenges and opportunities for system engineers. This paper presents a
novel architecture for solving distributed learning problems in framework of data
parallelism where model replicas are trained over multiple worker nodes. Worker
nodes are grouped into worker groups which enable model replicas to be asyn-
chronously aggregated via peer-to-peer communication. Merits of this framework
include elastic scalability, fault tolerance, and efficient communication.

1 Introduction

The past decade witnessed the popularity and prosperity of machine learning, especially deep learn-
ing. In various applications such as speech recognition [1], image classification [2], object detection
[3], face recognition [4], and natural language processing [5], deep learning has achieved state-of-
the-art performances. However, this has come at a cost of huge computational burden. Many web
applications require training data with TB/PB size. For example, WeChat, a mobile social platform
has more than 400 million active users. If each user produces 1KB data, then the total data size
would exceed 400TB. It is virtually intractable to store or process such a big data set on a single
machine. As a result, a big data set is partitioned to subsets, assigned to multiple machines, and
processed in a distributed manner. The benefits of distributed machine learning not only lie in the
capabilities to deal with extremely large datasets, but also in the attainment of large models. It is ob-
served in many deep learning applications that deeper and/or wider network architectures generally
result in better performance [6].

Two main strategies are widely used for parallelizing data training, namely data parallelism and
model parallelism. Data parallelism replicates multiple models over different partitioned subsets,
and aggregates gradients for model update. Model parallelism divides a model to several parts and
each part is processed on a worker node, which reduces memory consumption at a price of increasing
communication cost. A hybrid use of the two strategies is also adopted in some applications [7].
Whatever strategies are applied for parallelism, the issue of scattering model parameters across
different worker nodes is ubiquitous. The parameter server approach offers an efficient mechanism
for model update, consistency, and synchronization [8]. The parameter server serves as a globally
shared dictionary that is accessible by all worker nodes. In case of a group of parameters are used,
each parameter server holds and updates a part of the model parameters.

Although significant progress has been made in distributed machine learning, many issues such
as scalability, communication, and fault tolerance deserve further investigations. To facilitate ef-
ficient implementation of distributed machine learning, we propose an alternative data parallelism
framework based on peer-to-peer communication. Unlike the parameter server mode, there is no
globally shared dictionary in the cluster. Instead, asynchronous parameters scattering is performed

1



with parallel instances of model replicas on each worker node. Moreover, worker nodes are grouped
into worker groups and the number of worker groups can be dynamically adjusted. The proposed
framework offers a high degree of fault tolerance as well as the elastic scalability.

2 Related work

The data explosion in recent years surged interests on distributed machine learning in both academia
and industry. Many researchers explored scaling out machine learning algorithms through various
parallelism methodologies. Generally speaking, existing efforts can be categorized into algorithmic
paths and system paths. Algorithmic efforts mainly focus on the study of parallelizable optimiza-
tion algorithms with the aim of faster convergence, reduced variance, and lower complexity [9, 10].
System efforts mainly focus on investigations on data storage, programming interface, and commu-
nication protocols. In framework of mandate synchronization and iterative communication, Mahout
[11], based on Hadoop, and Mlib [12], based on Spark, offer two environments for creating scal-
able machine learning applications. However, the iterative communication over MapReduce [13]
results in high communication cost. To alleviate this problem, Dean et al. proposed a framework
called DistBelief where an asynchronous stochastic gradient decent algorithm, namely Downpour
SGD, was applied for parallel training [14]. Each worker independently fetches parameters from a
parameter server, computes the local gradient, and pushes it back to the server. The server imme-
diately updates global model parameters using the received gradient information. GraphLab [15], a
graph based framework, offers a parallel programming abstraction targeted for sparse iterative graph
algorithms. One limitation is that the graph representation may not be efficient for some machine
learning algorithms. Based on a bounded-asynchronous key-value store and a scheduler for itera-
tive machine learning computations, Petuum [16] offers a general purpose platform to run machine
learning applications at scale. Li et al. proposed a third-generation parameter server framework
where both data and workloads are distributed over worker nodes [8]. Advantages of this frame-
work include controllable asynchrony and user-definable communication reduction.

Advances in distributed learning frameworks proliferated implementations of related systems at
Google [14], Facebook [17], Yahoo [18], and many other companies. Based on DistBelief, Google
built a CPU cluster in light of hybrid data parallelism and model parallelism to train a deep network
with over 1 billion parameters using 16000 CPU cores. In addition, Google developed COTS [19], an
HPC system powered by GPU clusters with Infiniband interconnects and MPI. COTS is able to train
1 billion parameter networks with 3 GPU machines in several days. Facebooks multi-GPU cluster
is able to train the AlexNet [20] using the ImageNet 1K data set by 4 Nvidia Titan GPUs in a couple
of days. Baidu Paddle platform [21] applies a hybrid use of data parallelism and model parallelism
based on GPU clusters, which support online services such as voice search and Baidu map. Mariana
[7], a deep learning platform developed by Tencent, offers a multi-GPU data parallelism framework
for DNNs, a multi-GPU model parallelism and data parallelism framework for deep CNNs, and a
CPU cluster framework for large scale DNNs. These successful commercial applications manifest
the blossom of distributed machine learning.

3 Architecture

The goal of this work is to develop a distributed machine learning framework that meets the fol-
lowing requirements. (1) Elastic scalability. Computing resources in a data center process multiple
learning tasks simultaneously. It requires dynamic allocation of computing resources depending
on the characteristics of the upcoming task. Elastic scalability aims to add or remove worker nodes
without causing catastrophic failures of the training. (2) Fault tolerance. Node failures are inevitable
in practice. Fault tolerance aims to continue the training even if node failure happens. (3) Efficient
communication. A major bottleneck of distributed learning lies in the communication overhead as
frequent parameter swapping across worker nodes is required. Efficient communication aims to re-
duce network traffic overhead, as well as improving utilization of network bandwidth. (4) Flexibility.
A variety of machine learning toolkits such as Caffe and Torch are widely used in the community.
Flexibility aims to enable users to make choices based on their preferences. In addition, experienced
users may desire the flexibility of balancing the algorithmic convergence rate and system efficiency.

2



Figure 1: Overall architecture. Figure 2: Communication protocol within a
workder group.

The overall architecture of the proposed framework is illustrated in Fig. 1. Denote X as a training
data set with finite number of samples. Let p be the number of worker groups where each group
consists of a few worker nodes. The number of worker nodes in each worker group needs not
necessarily be the same. Let N be the total number of worker nodes. The training set is partitioned
into N subsets, and each subset is assigned to a worker node for local computation. Distributed
learning based on the proposed framework has two main operations: model aggregation and model
broadcasting.

Model aggregation: Assume a worker group i consists of m worker nodes, and each worker node
stores a model replica denoted as wi,j , j = 1, · · · ,m. Each worker node first computes local gradient
∆wi,j of the objective function employed by the learning algorithm using locally stored subset of
the training data. Then the worker node updates its local model wi,j based on the gradient, i.e.,
wi,j ← g(wi,j ,∆wi,j) where g(·) denotes an update rule. After k epochs of local learning (k is
a user-defined integer), each worker node scatters its model wi,j to the other worker nodes in the
same worker group. As a result, an aggregated model wi is obtained that is virtually trained using
m subsets. The way to perform parameter scattering is not unique. For example, it can be executed
hierarchically following the widely used tree structure. We herein propose a more efficient approach
to model aggregation where each model wi,j , j = 1, · · · ,m, is splitted into m partitions and each
worker node is responsible for aggregating 1 partition as shown in Fig. 2, where each worker node
scatters 1/m model parameters to the other nodes within the same worker group.

Model broadcasting: Once the model aggregation is completed at the worker group i, it imme-
diately broadcasts the updated model wi to its neighboring worker groups. The receiving worker
group j holds wi in the buffer to wait for the completion of its own model aggregation after which
wj is replaced by wi. As such, the worker group j continues local training in the following k epochs
based on the model obtained from the worker group i. The aim of model broadcasting is to enable
sufficient information exchange across worker nodes in an efficient way. It is worth noting that
model broadcasting can be asynchronous.

The features of the proposed distributed machine learning framework are summarized as follows:
multiple worker nodes are grouped into a worker group, and multiple worker groups asynchronously
perform parameters swapping. The parameters swapping processes consist of two phases, namely
model aggregation and model broadcasting. The model aggregation is performed within a worker
group, whereas the model broadcasting is performed across worker groups. This framework results
in a few contributions: First, it enables elastic scalability. Worker nodes can be dynamically added
or removed without restarting the training by controlling the asynchrony. Secondly, it improves fault
tolerance under the help of data repartition. If one worker node fails, its peers in the same worker
group can dynamically take over its job. Even if a whole worker group fails, the other worker groups
continue processing their training data and updating the model parameters. Thirdly, it offers a more
efficient communication protocol. Considering the model aggregation with linear partition, the total
data transfer flows are 2(m−1)

m of the model dimension. However, as most network technologies
support duplex mode, the actual communication overhead is equivalent to m−1

m . For the model
broadcasting operation, the communication overhead is a full model size. As a result, the total
communication cost for a worker node is 1 + m−1

m . On the other hand, the communication cost of

3



a worker node in framework of parameter server is usually 2 as the fetch and push steps cannot be
implemented simultaneously.

In physical view, it is clear that different algorithms perform varied on different computing archi-
tectures. For example, GPU is extremely powerful for algorithms based on floating point matrix
operations, CPU is competent for rule-based learning, and FPGA is suitable for learning based
on fixed-point matrix operation. The proposed peer-to-peer asynchronous communication supports
various computing architectures. We even tested a hybrid use of multiple computing architectures
to form a heterogeneous cluster. We implemented the proposed framework for providing machine
learning cloud services. Preliminary results on ImageNet classification show that a quasi linear
speedup is achieved.

4 Conclusion

In this paper we introduced a distributed data parallelism framework for machine learning appli-
cations. This framework offers a novel mechanism for model aggregation and parameter swapping
based on peer-to-peer model communication. A linear partition strategy is developed for model scat-
tering with the aim of reducing communication cost. Our implementation of the proposed framework
in cloud service indicates that it provides fault tolerance, network efficiency and speedup to various
machine learning applications

References

[1] Graves, A. & Jaitly, N. Towards end-to-end speech recognition with recurrent neural networks. In ICML,
2014.

[2] Szegedy, C., et al. Going deeper with convolutions. In CVPR, 2014.

[3] Girshick, R. Fast R-CNN. In ICCV, 2015.

[4] Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. Deepface: Closing the gap to human-level performance
in face verification. In CVPR, 2014.

[5] Hu, B., Lu, Z., Li, H., & Chen, Q. Convolutional neural network architectures for matching natural language
sentences. In NIPS, 2014.

[6] Simonyan, K., & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In
ICLR, 2015.

[7] Zou, Y., Jin, X., Li, Y., Guo, Z., Wang, E., & Xiao, B. Mariana: Tencent deep learning platform and its
applications. In VLDB, 2014.

[8] Li, M., et al. Scaling distributed machine learning with the parameter server. In OSDI, 2014.

[9] Agarwal, A. & Duchi, J. C. Distributed delayed stochastic optimization. In NIPS, 2011.

[10] Zhang, R. & Kwok, J. Asynchronous distributed admm for consensus optimization. In ICML, 2014.

[11] Apache Foundation. Mahout project, 2012. http://mahout.apache.org.

[12] Apache Foundation. Spark MLib, 2013. https://spark.apache.org/mllib/.

[13] Dean, J. & Ghemawat, S. MapReduce: simplified data processing on large clusters. CACM, 51(1):107113,
2008.

[14] Dean, J., et al. Large scale distributed deep networks. In NIPS, 2012.

[15] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., & Hellerstein, J. M. Distributed GraphLab: a
framework for machine learning and data mining in the cloud. In VLDB, 2012.

[16] Ho, Q., et al. More effective distributed ML via a stale synchronous parallel parameter server. In NIPS,
2013.

[17] Yadan, O., Adams, K., Taigman, Y., & Ranzato, M. A. Multi-gpu training of convnets. CoRR, 2013.

[18] Ahmed, A., Aly, M., Gonzalez, J., Narayanamurthy, S., & Smola, A. J. Scalable inference in latent variable
models. In WSDM, 2012.

[19] Coates, A., Huval, B., Wang, T., Wu, D. J., & Ng, A. Y. Deep learning with COTS HPC systems. In ICML,
2013.

4



[20] Krizhevsky, A., Sutskever, I., and & Hinton, G.E. ImageNet classification with deep convolutional neural
networks. In NIPS, 2012.

[21] Mao, J., Xu, W., Yang, Y., Wang, J.,& Yuille, A. Deep captioning with multimodal recurrent neural
networks (m-RNN). ICLR, 2015.

5


	Introduction
	Related work
	Architecture
	Conclusion

