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Abstract

Convolutional Neural Networks (CNNs) have achieved breakthrough results on
many machine learning tasks. However, training CNNs is computationally in-
tensive. When the size of training data is large and the depth of CNNs is high,
as typically required for attaining high classification accuracy, training a mod-
el can take days and even weeks. In this work, we propose SpeeDO (for Open
DEEP learning System in backward order). SpeeDO uses off-the-shelf hardwares
to speed up CNN training, aiming to achieve two goals. First, parallelizing s-
tochastic gradient descent (SGD) on a GPU cluster with off-the-shelf hardwares
improves deployability and cost effectiveness. Second, such a widely deployable
hardware configuration can serve as a benchmark on which software algorithmic
approaches can be evaluated and improved. Our experiments compared repre-
sentative SGD parallel schemes and identified bottlenecks where overhead can be
further reduced.

1 Introduction

Deep learning has attracted a lot of attention in recent years, thanks to its high-accuracy achieve-
ments in classifying multimedia data using convolutional neural network (CNN). To train a model to
attain high accuracy, CNN requires a large number of training data. Therefore, the training process
can take weeks of time to complete. Several efforts have been devoted to speeding up CNN training,
e.g., COTS systems [1, 2] of Google, Facebook [3], project Adam [4] of Microsoft, Mariana [5] of
Tencent, and Deep Image [6] of Baidu. To achieve speedup via parallelization, most of these algo-
rithms employ GPUs, while making sure IO overhead is in check with specialized hardwares such
as FDR InfiniBand and GPUDirect RDMA. These training algorithms run on specialized hardwares
and are limited in deployability and portability.

In this paper we introduce SpeeDO (Open DEEP learning System in the backward order), a deep
learning system designed for off-the-shelf hardwares. SpeeDO can be easily deployed, scaled and
maintained in a cloud environment, such as AWS EC2 cloud, Google GCE, and Microsoft Azure,
since no specialized hardware is required. In addition, it can be used as a benchmark for comparing
algorithm performance side-by-side. In the experiment section, we compare both the accuracy and
speed of five representative parallel stochastic gradient descent (SGD) implementations. We identify
their IO overheads and will address these and other bottlenecks using both algorithmic and system
approaches in SpeeDO’s future iterations. We plan to make SpeeDO publicly available via Apache
open source license.
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2 Architecture

The main goal of SpeeDO is building a scalable cluster on off-the-shelf hardwares to speed up
different implementations of distributed stochastic gradient descent, not limited to those described
in this paper. We have stress-tested with two configurations, one with twelve machines on a Google
GCE cluster, and the other with three machines each equipped with a 4-GPU cluster on AWS EC2
cloud. SpeeDO is expected to scale to large clusters of CPUs and GPUs.

The parameter server architecture proposed in [7] has been used for building distributed machine
learning systems [8]. SpeeDO adopts this design as well. Figure 1 shows the architecture and data
flow of SpeeDO, which is written in Java and Scala and runs on Java Virtual Machine (JVM).
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(a) Architecture of SpeeDO.
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Figure 1: Architecture and data flow of SpeeDO.

SpeeDO takes advantage of many existing solutions in the open-source community, including
Caffe [9], Redis [10], Akka [11] and Yarn [12]. Caffe is an open source deep learning project
that is actively evolving. SpeeDO relies on Caffe (written by C++) to perform SGD computation.
In order to reduce calculation overhead, most calculation is performed in Caffe using JNI wrapper.
Akka is used to handle message concurrency between the parameter server and workers. However,
model weights, which are up to hundreds or thousands megabytes, are not exchanged directly using
the message queue in Akka, but through Redis, a fast memory-based distributed database. In this
way, scalability and concurrency of the parameter server is mostly handled by Akka and Redis. Yarn
is used for resource management including creating the parameter server and worker JVMs. With
the help of existing products (e.g. Cloudera CDH), it is easy to deploy an entire cluster.

The parameter server is running in a JVM on a master node randomly chosen by Yarn. Each Caffe
worker runs on a separate JVM on its own. On a CPU cluster, typically only one worker is created
on each machine since Caffe already supports multi-CPU parallelism. However, since Caffe does
not yet support multiple GPUs, SpeeDO provides the flexibility to spawn multiple workers on the
same machine so that we can take advantage of a multi-GPU cluster.

Figure 1(b) illustrates the data flow of SpeeDO. Each worker first pulls the latest weight W from
Redis (step #1 in the figure), performs required computation using Caffe (step #2), pushes generated
Wi back to Redis (step #3), and informs the parameter server that it has finished training (step
#4). The parameter server checks whether it needs to immediately merge the delta, wait for other
workers then merge together, or discard the delta depending on the employed parallel scheme of
SGD described in Section 3. If immediate merging delta is required, the parameter server pulls Wi

from Redis, performs merging, and then pushes updated W back to Redis (steps #5 to #7). Finally,
the parameter server notifies the worker to start training the next iteration (step #8). When the
stopping criteria is met, the parameter server may inform all workers to terminate.

3 Parallelizing Stochastic Gradient Descent (SGD)

Stochastic gradient descent (SGD) is a popular algorithm for training a wide range of models in
machine learning. SGD is a common solution for solving deep learning model parameters. SGD
is scalable to very large datasets with reasonable convergence capability [13]. In this section, we
discuss five distributed implementations of SGD to speed up training, with pros and cons in terms
of convergence capability and overhead cost.
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3.1 Synchronous SGD

A randomly sampled mini-batch (very small compared to the entire training set) is used as training
input for each iteration of SGD. An obvious strategy is to evenly divide each mini-batch into P
parts [14]. Each of the P workers is responsible for training one part (1/P mini-batches) in every
SGD iteration. The parameter server then merges all gradients and updates weights.

Synchronous SGD enjoys exactly the same convergence capability as the single-machine version
of SGD. However, all workers are blocked until they have received the message from the parameter
server and then pull the updated weights for next iteration of SGD. Synchronous SGD has to wait for
the slowest worker to complete, and this synchronization overhead degrades speedup performance.

3.2 Asynchronous SGD

In asynchronous SGD, each worker is assigned one entire mini-batch and trains completely on its
own. Whenever a worker completes, the parameter server updates weights and the worker starts
next iteration. Obviously, eliminating the synchronization overhead improves speedup. However,
since each worker doesn’t consider updates of the other workers, asynchronous SGD converges more
slowly than synchronous SGD.

To further speed up the training speed, each worker can merge with the master for every S iterations
instead of one. The selection of S depends on the speedup and convergence rate tradeoff.

3.3 Partially Synchronous SGD

Workers may complete training in different speeds depending on factors such as machine speed,
machine load, and network capability. However, asynchronous SGD doesn’t penalize a slow worker,
which may be training with very old weights. This may lead to high variance of gradient updates
and deteriorate convergence capability [15].

A strategy proposed by Petuum [16, 17] forces synchronization all workers if the gap among workers
exceeds a limit. The workers normally follow asynchronous SGD, but a forced synchronization is
triggered if the fastest worker is s iterations ahead of the slowest worker. This forced synchronization
can be expensive if the number of workers is very large.

3.4 Weed-Out SGD

We propose a strategy similar to how MapReduce handles draggers called Weed-Out SGD. This
scheme restarts slow workers on different machines and accepts updates from other fast workers
(weeding out draggers). Weed-Out SGD can help if the problem of draggers is severe (typically
when the number of workers is large the delay caused by draggers can be significant), and when the
additional resource cost is acceptable.

3.5 Elastic Averaging SGD

Zhang et al. [18] proposed a strategy that converges faster than asynchronous SGD. The parameter
server and the workers maintain their own copies of network weights so workers can perform more
exploration while the parameter server keeps stable central weights.

Each worker employs asynchronous SGD and merges with the parameter server every S iterations,
except that delta weights are merged in a different way. Instead of adding delta values to central
weights directly, the parameter server calculates a panelized weight update, which is applied to both
the central weights and the local worker’s weights.

4 Experiments

Three experimental results are presented in this section: 1) validation of all SGD parallel schemes
on a CPU cluster, 2) comparison of all schemes on a GPU cluster, and 3) comparison of different
number of workers on a GPU cluster. The CPU experiment uses Cifar10 [19] dataset (50, 000 32×32
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images). The GPU experiments use GoogleNet [20] model with dataset of 60, 000 224×224 images.
In all experiments, the sequential SGD implementation in Caffe is used as the baseline.

4.1 Comparing Different SGD schemes on a CPU Cluster

The Cifar10 dataset is used to validate all parallel implementations on a CPU cluster with four 8-core
instances. The result is shown in Figure 2, where asynchronous, partially synchronous and weed-out
implementations failed to scale even when the number of workers is very small.

0 2 4 6 8 10
0.8

1

1.2

1.4

1.6

1.8

2

number of epoch

tr
a
in

in
g
 l
o
s
s

(a) Loss vs. epoch with 2 workers

0 2 4 6 8 10
0.8

1

1.2

1.4

1.6

1.8

2

number of epoch

tr
a
in

in
g
 l
o
s
s

 

 
sequential SGD in Caffe
synchronous
asynchronous
partial synchronous
weed−out
easgd

(b) Loss vs. epoch with 3 workers

0 2 4 6 8 10
0.8

1

1.2

1.4

1.6

1.8

2

number of epoch

tr
a
in

in
g
 l
o
s
s

(c) Loss vs. epoch with 4 workers

0 10 20 30 40 50
0.8

1

1.2

1.4

1.6

1.8

2

time (min)

tr
a
in

in
g
 l
o
s
s

 

 
speed up =1 (baseline)
speed up =1.757
speed up =1.2567
speed up =1.2402
speed up =1.2842
speed up =2.0231

(d) Loss vs. time with 2 workers

0 10 20 30 40 50
0.8

1

1.2

1.4

1.6

1.8

2

time (min)

tr
a
in

in
g
 l
o
s
s

 

 
speed up =1 (baseline)
speed up =2.27
speed up =1.3311
speed up =1.1731
speed up =1.1988
speed up =2.4853

(e) Loss vs. time with 3 workers

0 10 20 30 40 50
0.8

1

1.2

1.4

1.6

1.8

2

time (min)

tr
a
in

in
g
 l
o
s
s

 

 
speed up =1 (baseline)
speed up =2.4673
speed up =1.1912
speed up =0.98329
speed up =1.1829
speed up =2.7295
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Figure 2: Validation of SGD parallel schemes on a CPU cluster.

Both synchronous SGD and EASGD share a similar convergence rate with the sequential SGD in
Caffe (shown in Figure 2(a)-(c)). (Again, the sequential SGD is supposed to enjoy the best conver-
gence rate.) This result indicates that EASGD may reduce the adversary effect of diverging gradients
among workers, while still enjoying advantages in training time over synchronous SGD. EASGD
enjoys the best speedup with a slight degradation in training loss. When the number of workers
is 4, EASGD achieves a speedup of 2.7925 times, thanks to both parallelization and asynchronous
parameter update.

4.2 Comparing Different SGD schemes on a GPU Cluster
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Figure 3: Validation of SGD parallel schemes on a GPU cluster.
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Although the speedup on the CPU cluster looks good, a single GPU can easily achieve better per-
formance. However, since GoogleNet is far larger than Cifar10, it may take days to train even on a
single GPU. Therefore, we hope that the employment of multiple-GPUs could help reduce training
time. Figure 3 compares all schemes for training GoogleNet on a GPU cluster.

It can be observed that the relative speedup performance of the five schemes maintains to be similar
to their relative order on the CPU cluster — EASGD achieves the best speedup. However, the best
speedup is only 1.7696, when the number of worker is 3 instead of 4. This result indicates that the
IO overhead dominates the total training time. In addition, the convergence rate of EASGD is worse
than the sequential SGD in Caffe as we speculate that the GoogleNet model is harder to train.

4.3 Parameter Analysis of EASGD on GPU Cluster
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Figure 4: EASGD on GPU Cluster. Workers merge with parameter server every S iterations.

Figure 4 uses EASGD to show the impact of two parameters: the number of workers and the setting
of parameter S. As expected, a larger S reduces the IO overhead by slightly degrading training
accuracy. The speedup reported in Figure 4 is slightly different from that reported in Figure 2(d)-(f),
since we calculated speedup with a different training loss (the worst loss of all schemes at the end
of training was used).

The speedup performance is disappointing when the number of workers increases. The best speedup
of 2.0795 is achieved by using 6 workers and S = 1. Since GPU is much faster than CPU, the IO
overhead in both memory access and communication exacerbates, especially when the number of
workers is large. With different S values, the computation time is the same while the communica-
tion overhead is reduced to 1/S. The percentage of the communication overhead is 29% with the
best configuration. According to Amdahl’s law, the overhead portion of SGD caps the maximum
expected improvement to the overall system.

5 Conclusion

We presented SpeeDO, a distributed SGD system built upon off-the-shelf hardware. Several parallel
SGD schemes were evaluated and compared on both CPU and GPU clusters. In a multi-CPU envi-
ronment, all schemes can achieve reasonable speedup. In a multi-GPU environment, Amdahl’s law
caps the room that can be achieved by employing only parallel computing.

This paper evaluated all prior schemes ([2, 5, 6]) side-by-side and demonstrates that the best achiev-
able speedup may be highly dependent on the system configuration and size of training data. Though
the sizes of training datasets used in our experiments are relatively small, we believe that a larger
training set may increase both computation and IO time in similar proportions, and the conclusion
of this work holds. Clearly, improving IO performance [21] via hardware and software schemes is
the top priority of future research work.
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