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Abstract
We propose an embarrassingly parallel, memory efficient inference algorithm for
latent variable models in which the complete data likelihood is in the exponential
family. The algorithm is a stochastic cellular automaton and converges to a valid
maximum a posteriori fixed point. Applied to latent Dirichlet allocation we find
that our algorithm is over an order of magnitude faster than the fastest current
approaches. A simple C++/MPI implementation on a 4-node cluster samples 570
million tokens per second. We process 3 billion documents and achieve predictive
power competitive with collapsed Gibbs sampling and variational inference.

1 Introduction

In the past decade, frameworks such as stochastic gradient descent (SGD) [18] and map-reduce [5]
have enabled machine learning algorithms to scale to larger and larger datasets. However, these
frameworks are not always applicable to Bayesian latent variable models with rich statistical de-
pendencies and intractable gradients. Variational methods [12] and Markov chain Monte-Carlo
(MCMC) [7] have thus become the sine qua non for inferring the posterior in these models.

Sometimes—due to the concentration of measure phenomenon associated with large sample sizes—
computing the full posterior is unnecessary and maximum a posteriori (MAP) estimates suffice. It
is hence tempting to employ gradient descent, but for latent variable models such as latent Dirichlet
allocation (LDA), calculating gradients involves expensive expectations over rich sets of variables
[17]. MCMC is an appealing alternative, but algorithms such as the Gibbs sampler are inherently
sequential and the extent to which they can be parallelized depends heavily upon how the structure
of the statistical model interacts with the data. For instance, chromatic sampling [8] is infeasible
for LDA, due to its dependence structure. Instead, we employ stochastic cellular automata (SCA),
which like conventional cellular automata are massively parallel, but with stochastic updates.

We propose exponential SCA (ESCA) for inference in latent variable models with complete data
likelihood in the exponential family. ESCA is embarassingly parallel because it is an SCA, and
has a minimal memory footprint because it stores only the data and the sufficient statistics (by the
very definition of sufficient statistics, the footprint cannot be further reduced). In contrast, varia-
tional approaches such as stochastic variational inference (SVI) [11] require storing the variational
parameters, while MCMC-based methods, such as YahooLDA [20] require storing the latent vari-
able assignments. Furthermore, our algorithm employs double-buffering for lock-free parameter
updates (assuming atomic increments) while enabling the use of approximate counters. Thus, we
substantially reduce memory costs and communication requirements in distributed enviroments.
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2 Exponential SCA

Stochastic cellular automata (SCA), also known as probabilistic cellular automata, or locally-
interacting Markov chains, are a stochastic version of a discrete-time, discrete-space dynamical
system in which a noisy local update rule is homogeneously and synchronously applied to every
site of a discrete space. They have been studied in statistical physics, mathematics, and computer
science, and some progress has been made toward understanding their ergodicity and equilibrium
properties. A recent survey [14] is an excellent introduction to the subject, and a dissertation [13]
contains a comprehensive and precise presentation of SCA. Formally, the automaton, is given by an
evolution function � : S �! S over the state space S = Z �! C which is a mapping from the
space of cell identifiers Z to cell values C. The global evolution function applies a local function
�z(c1, c2, · · · , cr) 7! c s.t. ci = s(zi) to every cell z 2 Z . That is, � examines the values of each
of the neighbors of cell z and then stochastically computes a new value c. The dynamics begin with
a state s0 2 S that can be configured using the data or a heuristic. Exponential SCA (ESCA) is
based on SCA but achieves better computational efficiency by exploiting the structure of the suffi-
cient statistics for latent variable models in which the complete data likelihood is in the exponential
family. Most importantly, the local update function � for each cell depends only upon the sufficient
statistics and thus does not scale linearly with the number of neighbors.

2.1 Latent Variable Exponential Family

Latent variable models are useful when reasoning about partially observed data such as collections
of text or images in which each i.i.d. data point is a document or image. Since the same local model
is applied to each data point, they have the following form

p(z,x, ⌘) = p(⌘)
Y

i

p (zi, xi|⌘) . (1)

Our goal is to obtain a MAP estimate for the parameters ⌘ that explain the data x through the latent
variables z. To expose maximum parallelism, we want each cell in the automaton to correspond to a
data point and its latent variable. However, this is problematic because in general all latent variables
depend on each other via the global parameters ⌘ and a naive approach to updating a single cell
would then require examining every other cell in the automaton.

Fortunately, if we further suppose that the complete data likelihood is in the exponential family,
i.e., p(zi, xi|⌘) = exp (hT (zi, xi) , ⌘i � g(⌘)) then the sufficient statistics are given by T (z,x) =P

i T (zi, xi) and we can thus express any estimator of interest as a function of just T (z,x) which
factorizes over the data. Further, when employing expectation maximization (EM), the M-step is
possible in closed form for many members of the exponential family. This allows us to reformulate
the cell level updates to depend only upon the sufficient statistics instead of the neighboring cells.
The idea is that, unlike SCA (or MCMC in general) which produces a sequence of states that corre-
spond to complete variable assignments s0, s1, . . . via a transition kernel q(st+1|st), ESCA produces
a sequence of sufficient statistics T 0, T 1, . . . directly via an evolution function �(T t

) 7! T t+1.

2.2 Stochastic EM

Before we present ESCA, we first describe stochastic EM (SEM). Suppose we want the MAP esti-
mate for ⌘, max⌘ p(x, ⌘) = max⌘

R
p(z,x, ⌘)µ(dz) and employ expectation maximization (EM):

E-step Compute in parallel p(zi|xi, ⌘(t)).
M-step Find ⌘(t+1) that maximizes the expected log-likelihood with respect to the conditional

⌘(t+1)
= argmax

⌘
E
z|x,⌘(t) [log p(z,x, ⌘)] = ⇠�1

 
1

n+ n0

X

i

E
z|x,⌘(t) [T (zi, xi)] + T0

!

where ⇠(⌘) = rg(⌘) is invertible as r2g(✓) � 0 and n0, T0 parametrize the conjugate prior.
Although EM exposes substantial parallelism, it is difficult to scale, since the dense structure
p(zi|xi, ⌘(t)) defines values for all possible outcomes for z and thus puts tremendous pressure on
memory bandwidth. To overcome this we introduce sparsity by employing stochastic EM (SEM)
[3]. SEM introduces an S-step after the E-step that replaces the full distribution with a single sample:
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(a) Phase 1 (b) Phase 2
Figure 1: Efficient (re)use of buffers

S-step Sample z(t)i ⇠ p(zi|xi; ⌘(t)) in parallel.

Subsequently, we perform the M-step using the imputed data instead of the expectation. This sim-
ple modification overcomes the computational drawbacks of EM for cases in which sampling from
p(zi|xi; ⌘(t)) is feasible. We can now employ fast samplers, such as the alias method, exploit spar-
sity, reduce CPU-RAM bandwidth while still maintaining massive parallelism. More importantly,
the S-step also enables all three steps to now be expressed in terms of the current sufficient statistics.
This enables distributed and parallel implementations that efficiently execute on an SCA.

2.3 ESCA for Latent Variable Models

We now present ESCA as SEM on an SCA in which each cell corresponds to a data point with its
associated latent variables. Define an SCA over the state space S of the form S = Z �! K ⇥ X ,
where Z is the set of cell identifiers (e.g., one per data point), K is the domain of latent variables,
and X is the domain of the observed data. The initial state s0 is the map defined as follows: for
every data point, we associate a cell z to the pair (kz, x) where kz is chosen at random from K and
independently from kz0 for all z0 6= z. This gives us the initial state s0 = z 7! (kz, x).

We now need to describe the evolution function �. For state s and cell z define the distribution:
pz(k|s) = f(z, T (s)) (2)

Assuming that s(z) = (k, x) and that k0 is a sample from pz (hence the name “stochastic” cellular
automaton) we define the local update function as �(s, z) = (k0, x) where s(z) = (k, x) and k0 ⇠
pz( · |s). That is, the observed data remain unchanged, but we choose a new latent variable according
to the distribution pz induced by the state. We obtain the evolution function of the stochastic cellular
automaton by applying the function � uniformly on every cell �(s) = z 7! �(s, z). Finally, the
SCA algorithm simulates the evolution function � starting with s0. We remark that ESCA converges
weakly to a distribution with mean equal to some root of the score function (r⌘ log p(xi; ⌘)) and
thus a MAP fixed point. See Appendix D for details.

Our implementation has two copies of the data structure containing sufficient statistics T (0) and
T (1). We do not compute the values T (z,x) but maintain their sum as we impute values of the
cells/latent variables. During iteration 2t of the evolution function, we apply � by reading from
T (0) and incrementing T (1) as we sample the latent variables (Figure 1). Then in the next iteration
2t+1 we reverse the roles of data structure, i.e. read from T (1) and increment T (0). See Algorithm 1.

Algorithm 1 ESCA
1: Randomly initialize each cell
2: for t = 0 ! num iterations do
3: for all cell z independently in parallel do
4: Read sufficient statistics from T (t mod 2)

5: Compute stochastic updates using pz(k|s)
6: Write sufficient statistics to T (t+1 mod 2)

7: end for
8: end for

Use of such read/write buffers offer a virtually lock-free (assuming atomic increments) implemen-
tation scheme for ESCA and is analogous to double-buffering in computer graphics. Although there
is a synchronization barrier after each round, its effect is mitigated because each cell’s work de-
pends only upon the sufficient statistics and thus does the same amount of work. Therefore, evenly
balancing the work load across computation nodes is trivial, even for a heterogeneous cluster.
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3 ESCA for LDA

Latent Dirichlet allocation (LDA) [1] is a must-have for analytic platforms and consequently needs
to scale. LDA models each document m of M documents as a distribution ✓m over K topics. A
topic k is a distribution �k over V vocabulary words. A document m comprises Nm words wmn

each with a latent variable zmn indicating a topic assignment. Both distributions ✓m and �k have a
Dirichlet prior, parameterized respectively with a constant ↵ and �. See Appendix B for details.

ESCA simulates the inference steps of SEM which we derive for LDA in Appendix B. For LDA, the
state space is S = Z �! K ⇥ M ⇥ V where Z is the set of cell identifiers (one per token in our
corpus), K is a set of K topics, M is a set of M document identifiers, and V is a set of V identifiers
for the vocabulary words. From this we obtain the full conditional of LDA for line 5 of Algorithm 1

pz(k|s) / (Dmk + ↵)⇥ Wkv + �

Tk + � V
(3)

where Dmk =

���
�
zmn | zmn = k

 ���, Wkv =

���
�
zmn | wmn = v, zmn = k

 ���, and Tk =

VP
v=1

Wkv .

It reassuring to see that the boxed region of Equation 3 is similar to respective formulas in collapsed
Gibbs sampling (CGS) [9] and collapsed variational Bayes (CVB0) [21]. For LDA, ESCA implicitly
performs SGD with Frank-Wolfe updates, alluding to a convergence rate (Appendix C).

4 Experiments

Software & hardware All algorithms are implemented in C++11. We implement multithreaded
parallelization within a node using the work-stealing Fork/Join framework, and the distribution
across multiple nodes using the process binding to a socket over MPI. We implement ESCA with a
sparse arrays D counting topics per documents and Vose’s alias method to draw from discrete distri-
butions. We run our experiments on a small cluster of 4 nodes connected through 10Gb/s Ethernet.
Each node has two 9-core Intel Xeon E5 processors for a total of 36 hardware threads per node.

Datasets We employ three datasets: PubMed abstracts (141,043 vocabulary words, 8.2 million doc-
uments, 737 million tokens), Wikipedia (210,223 words, 6.6 million documents, 1.1 billion tokens)
and a large proprietary dataset (140,000 words, 3 billion documents, and 171 billion tokens).

Evaluation To evaluate the proposed method we use predicting power as a metric by calculating
the per-word log-likelihood (equivalent to negative log of perplexity) on 10,000 held-out documents
conditioned on the trained model. We set K = 1000 to demonstrate performance for a large number
of topics. The hyper parameters are set as ↵ = 50/K and � = 0.1 as suggested in [10]; other
systems such as YahooLDA and Mallet also use this as the default parameter setting. The results
are in Figure 2 and additional experiments are in Appendix H. Finally, for the large dataset, our
implementation of ESCA (only 300 lines of C++) processes 570 million tokens per second (tps) on
our modest 4-node cluster. In comparison, some of the best existing systems achieve 112 million tps
(F+LDA, personal communication) and 60 million tps (lightLDA) [25]. See Table 1 for details.

Table 1: Comparison with existing scalable LDA frameworks.
Method Dataset Infrastructure Processing speed
YahooLDA [20] 140K vocab, 8.2M docs, 797M tokens 10 machines 2010 12.87M tokens/s
lightLDA [25] 50K vocab, 1.2B docs, 200B tokens 24 machines 2014 60M tokens/s
F+LDA [24] 1M vocab, 29M docs, 1.5B tokens 32 machines 2014 110M tokens/s
ESCA 210K vocab, 6B docs, 128B tokens 8 Amazon c4.8x large 503M tokens/s

Discussion
We proposed an embarassingly parallel, memory efficient MAP inference algorithm that executes on
an SCA and applies to a large class of latent variable models. Our algorithm exposes many system
level optimizations such as approximate counters, and outperforms current best approaches.
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(a) PubMed, K=1000, ↵=0.05, �=0.1

Iteration
0 20 40 60 80 100

pe
r w

or
d 

lo
g-

lik
el

ih
oo

d

-9.5

-9

-8.5

-8
wiki 1000

SCA
CGS
CVB0

(b) Wikipedia, K=1000, ↵=0.05, �=0.1
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(c) Pubmed, K=1000, ↵=0.05, �=0.1
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(d) Wikipedia, K=1000, ↵=0.05, �=0.1

Figure 2: Evolution of log likelihood on Wikipedia and Pubmed over number of iterations and time.
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