ACCELERATED COMPUTING FOR AI

Bryan Catanzaro, 7 December 2018

ACCELERATED COMPUTING: REDUCE LATENCY OF IDEA GENERATION

Research as a sequential, cyclic process

WHY IS DEEP LEARNING SUCCESSFUL

MORE COMPUTE: MORE AI https://blog.openai.com/ai-and-compute/

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

DEEP NEURAL NETWORKS 101

Simple, powerful function approximators

$$y_j = f\left(\sum_i w_{ij} x_i\right)$$

One layer: nonlinearity \circ linear combination

$$f(x) = \begin{cases} 0, \ x < 0\\ x, \ x \ge 0 \end{cases}$$

nonlinearity

Deep Neural Network

TRAINING NEURAL NETWORKS

$$y_j = f\left(\sum_i w_{ij} x_i\right)$$

Computation dominated by dot products

Multiple inputs, multiple outputs, batch means it is compute bound

@ctnzr

7 📀 NVIDIA

MATRIX MULTIPLICATION

Thor's hammer

TENSOR CORE

Mixed Precision Matrix Math 4x4 matrices

D = AB + C

CHUNKY INSTRUCTIONS AMORTIZE OVERHEAD

Taking advantage of that $O(n^3)$ goodness

Tensor cores yield efficiency benefits, but are still programmable

*Overhead is instruction fetch, decode, and operand fetch – 30pJ **Energy numbers from 45nm process

Bill Dally

TESLA V100

21B transistors 815 mm²

80 SM* 5120 CUDA Cores 640 Tensor Cores

32 GB HBM2 900 GB/s HBM2 300 GB/s NVLink

GPU PERFORMANCE COMPARISON

	P100	V100	Ratio	T 4
Training accelera	tion 10 TFLOPS	120 TFLOPS	12x	65 TFLOPS
Inference acceleration	20 TFLOPS	120 TFLOPS	6x	130 TOPS
FP64/FP32	5/10 TFLOPS	7.5/15 TFLOPS	1.5x	0.25/8 TFLOPS
Memory Bandwid	ith 720 GB/s	900 GB/s	1.2x	320 GB/s
NVLink Bandwid	th 160 GB/s	300 GB/s	1.9x	
L2 Cache	4 MB	6 MB	1.5x	4 MB
L1 Caches	1.3 MB	10 MB	7.7x	6 MB
Power	250 W	300 W	1.2x	70 W

@ctnzr

PRECISION

INT 8

Turing follows Volta (Tesla T4, Titan RTX) Includes lower precision tensor cores (Not shown: 1 bit @ 128X throughput)

32 bit accumulation

COMPUTATIONAL EVOLUTION

Deep learning changes every day: In tension with Specialization

New solvers, new layers, new scaling techniques, new applications for old techniques, and much more...

PROGRAMMABILITY

Where the research happens

Computation dominated by linear operations

But the research happens elsewhere:

New loss functions

New non-linearities

New normalizations

New inputs & outputs

CUDA is fast and flexible parallel C++

REFINING CUDA: CUDA GRAPHS

Latency & Overhead Reductions

Launch latencies:

- CUDA 10.0 takes at least 2.2us CPU time to launch each CUDA kernel on Linux
- Pre-defined graph allows launch of any number of kernels in one single operation

CUDA LIBRARIES Optimized Kernels

CUBLAS: Linear algebra

Many flavors of GEMM

CUDNN: Neural network kernels

Convolutions (direct, Winograd, FFT)

Can achieve > Speed of Light!

Recurrent Neural Networks

Image data																
D0 I	D1	D2		D0	D1	D2		D0	D1	D2			D4	D5	D7	D8
D3	D4	D5		D3	D4	D5		D3	D4	D5			D3	D4	D6	D7
D6	D7	D8		D6	D7	D8		D6	D7	D8			D1	D2	D4	D5
D [[0,0,	,:,:]		D [0,1,:,:]			D[0,2,:,:]					DO	D1	D3	D4	
N - 1										D4	D5	D7	D8			
	Filter data $C = 3$									D3	D4	D6	D7			
FO F	-1	FO	F1	F1 F0 F1 $H = 3$								D1	D2	D4	D5	
F2 F	-3	F2	F3	F	2 F	3	W = 3							D1	D3	D4
	$\overline{F[0,:,::]} \qquad \qquad$										D4	D5	D7	D8		
G0 0	31	G0	50 G1 G0 G1 $S = 2$								D3	D4	D6	D7		
G2 0	G 3	G2	G3	G	$G2 G3 \qquad \qquad u=v = 1$								D1	D2	D4	D5
	$F[1,;;;] \qquad pad_h = 0$									D0	D1	D3	D4			
	$puu_w = 0$															
F0 F	1	F2	F3	FO	F1	F2	F3	FO	F1	F2	F3					
G0 G	61	G2	G3	G0	G1	G2	G3	G0	G1	G2	G3					
	F _m										<i>O</i> _m					
Lowering Convolutions to GEMM																

IMPROVED HEURISTICS FOR CONVOLUTIONS

cuDNN 7.4.1 (Nov 2018) vs. cuDNN 7.0.5 (Dec 2017)

PERSISTENT RNN SPEEDUP ON V100 cuDNN 7.4.1 (Nov 2018) vs. cuDNN 7.0.5 (Dec 2017)

@ctnzr

TENSORCORES WITH FP32 MODELS cuDNN 7.4.1 (Nov 2018) vs. cuDNN 7.0.5 (Dec 2017)

Average speedup of unique cuDNN convolution calls during training

- Enabled as an experimental feature in the TensorFlow NGC Container via an environment variable (same for cuBLAS)
- Should use in conjunction with Loss Scaling

@ctnzr

- 2.4 TB/s bisection bandwidth
- Equivalent to a PCIe bus with 1,200 lanes

NVSWITCH: NETWORK FABRIC FOR AI

- Inspired by leading edge research that demands unrestricted model parallelism
 - Each GPU can make random reads, writes and atomics to each other GPU's memory
- 18 NVLink ports per switch

DGX-2: ALL-TO-ALL CONNECTIVITY

Each switch connects to 8 GPUs

Each GPU connects to 6 switches

Each switch connects to the other half of the system with 8 links

2 links on each switch reserved

FRAMEWORKS

Several AI frameworks

Let researchers prototype rapidly

Different perspectives on APIs

All are GPU accelerated

AUTOMATIC MIXED PRECISION

Four Lines of Code => 2.3x Training Speedup in PyTorch (RN-50)

- Mixed precision training uses halfprecision floating point (FP16) to accelerate training
- You can start using mixed precision today with four lines of code
- This example uses AMP: Automatic Mixed Precision, a PyTorch library
 - No hyperparameters changed

```
+ amp_handle = amp.init()
# ... Define model and optimizer
for x, y in dataset:
    prediction = model(x)
    loss = criterion(prediction, y)
- loss.backward()
+ with amp_handle.scale_loss(loss,
+         optimizer) as scaled_loss:
+        scaled_loss.backward()
optimizer.step()
```

AUTOMATIC MIXED PRECISION Four Lines of Code => 2.3x Training Speedup (RN-50)

- Real-world single-GPU runs using default PyTorch ImageNet example
 - NVIDIA PyTorch 18.08-py3 container
 - AMP for mixed precision
- Minibatch=256
- Single GPU RN-50 speedup for FP32 -> M.P. (with 2x batch size):
 - MxNet: 2.9x
 - TensorFlow: 2.2x
 - TensorFlow + XLA: ~3x
 - PyTorch: 2.3x
- Work ongoing to bring to 3x everywhere

DATA LOADERS

Fast training means greater demands on the rest of the system

Data transfer from storage (network)

CPU bottlenecks happen fast

GPU accelerated, user defined data loaders

Move decompression & augmentation to GPU

Both for still images and videos

Research video data loader using HW decoding: NVVL: <u>https://github.com/NVIDIA/NVVL</u>

SIMULATION

Many important AI tasks involve agents interacting with the real world

For this, you need simulators

Physics

Appearance

Simulation has a big role to play in AI progress

RL needs good simulators - NVIDIA PhysX is now open source:

https://github.com/NVIDIAGameWorks/PhysX-3.4

MAKE INGENUITY THE LIMITING FACTOR

Accelerated Computing for AI

High computational intensity +

Programmability & flexibility fundamental for AI systems

Need a systems approach

Chips are not enough

And lots of software to make it all useful

