
Bryan Catanzaro, 7 December 2018

ACCELERATED COMPUTING 
FOR AI



2@ctnzr

ACCELERATED COMPUTING: 
REDUCE LATENCY OF IDEA GENERATION

Research as a sequential, cyclic process

Idea

Hack

Code

Train

Test

Invent

Limit:
Programmability

Limit:
Throughput

Limit:
Ingenuity



3@ctnzr

WHY IS DEEP LEARNING SUCCESSFUL

Big data sets

New algorithms

Computing hardware

Data & Compute

Accuracy
Deep Learning

Many previous 
methods

Focus of this talk



4@ctnzr

MORE COMPUTE: MORE AI
https://blog.openai.com/ai-and-compute/



5@ctnzr

DEEP NEURAL NETWORKS 101
Simple, powerful function approximators

yj = f

 
X

i

wijxi

!

f(x) =

(
0, x < 0

x, x � 0

One layer: nonlinearity ⚬ linear combination

nonlinearity

x w y

Deep Neural Network



6@ctnzr

TRAINING NEURAL NETWORKS

Computation dominated by dot products

Multiple inputs, multiple outputs, batch means it is compute bound

yj = f

 
X

i

wijxi

!
x w y

Train one model: 20+ Exaflops



7@ctnzr

LAWS OF PHYSICS
Successful AI uses Accelerated Computing

Accelerated Performance

0.1

1

10

GPU TFLOPs

20X in 10 years

Volta

General Purpose Performance

20X gap
and growing…



8@ctnzr

MATRIX MULTIPLICATION
Thor’s hammer

m

k

k

n

n

m
!(#$)

!(#&)

communication

computation



9@ctnzr

TENSOR CORE
Mixed Precision Matrix Math
4x4 matrices

D = AB + C

D = 

FP16 or FP32 FP16 FP16 FP16 or FP32

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3



10@ctnzr

CHUNKY INSTRUCTIONS AMORTIZE OVERHEAD
Taking advantage of that !(#$) goodness

Operation Energy** Overhead*
HFMA 1.5pJ 2000%
HDP4A 6.0pJ 500%
HMMA 110pJ 27%

*Overhead is instruction fetch, decode, and operand fetch – 30pJ
**Energy numbers from 45nm process

Bill Dally

1 FMA

4 FMA

128 FMA

Tensor cores yield efficiency benefits, 
but are still programmable



11@ctnzr

21B transistors
815 mm2

80 SM*
5120 CUDA Cores
640 Tensor Cores

32 GB HBM2
900 GB/s HBM2

300 GB/s NVLink

TESLA V100

*full GV100 chip contains 84 SMs



12@ctnzr

P100 V100 Ratio T4

Training acceleration 10 TFLOPS 120 TFLOPS 12x 65 TFLOPS

Inference 
acceleration 20 TFLOPS 120 TFLOPS 6x 130 TOPS

FP64/FP32 5/10 TFLOPS 7.5/15 
TFLOPS 1.5x 0.25/8 TFLOPS

Memory Bandwidth 720 GB/s 900 GB/s 1.2x 320 GB/s

NVLink Bandwidth 160 GB/s 300 GB/s 1.9x --

L2 Cache 4 MB 6 MB 1.5x 4 MB

L1 Caches 1.3 MB 10 MB 7.7x 6 MB

Power 250 W 300 W 1.2x 70 W

GPU PERFORMANCE COMPARISON



13@ctnzr

PRECISION

Turing follows Volta (Tesla T4, Titan RTX)

Includes lower precision tensor cores

(Not shown: 1 bit @ 128X throughput)

32 bit 
accumulation

VOLTA+



14@ctnzr

COMPUTATIONAL EVOLUTION

2012 2013 2014 2015 2016 2017 2018

AlexNet

1-bit SGD

FFT Convolutions

cuDNN

WinoGrad

Batch Normalization

NCCL

Sparsely Gated 
Mixture of Experts

Phased LSTM

Mask R-CNN

Persistent RNNs

Transformer

GLOW
OpenAI 5
BigGAN

New solvers, new layers, new scaling techniques, new applications for old techniques, and much more…

Deep learning changes every day: In tension with Specialization



15@ctnzr

PROGRAMMABILITY

Computation dominated by linear operations

But the research happens elsewhere:

New loss functions

New non-linearities 

New normalizations

New inputs & outputs

Where the research happens

CUDA is fast and flexible parallel C++

CTC loss

Swish



16@ctnzr

REFINING CUDA: CUDA GRAPHS

Launch latencies:

§ CUDA 10.0 takes at least 2.2us CPU time to launch each CUDA kernel on Linux

§ Pre-defined graph allows launch of any number of kernels in one single operation

Latency & Overhead Reductions

time

Launch
A

Launch
B

Launch
C

Launch
D

Launch
E

A B C D E

Build
Graph

Launch Graph

CPU Idle

CPU Idle

A B C D E

Useful for small models

Works with JIT graph 
compilers



17@ctnzr

CUDA LIBRARIES

CUBLAS: Linear algebra

Many flavors of GEMM

CUDNN: Neural network kernels

Convolutions (direct, Winograd, FFT)

Can achieve > Speed of Light!

Recurrent Neural Networks

Optimized Kernels

Lowering Convolutions to GEMM



18@ctnzr

IMPROVED HEURISTICS FOR CONVOLUTIONS
cuDNN 7.4.1 (Nov 2018) vs. cuDNN 7.0.5 (Dec 2017)

0.1x

1.0x

10.0x

100.0x

Batch=32 Batch=128 Batch=256

Sp
ee

du
p

Unique cuDNN convolution API calls

Speedup of unique cuDNN convolutions calls for the SSD detector model



19@ctnzr

PERSISTENT RNN SPEEDUP ON V100

0x

2x

4x

6x

8x

10x

12x

Sp
ee

du
p

Unique cuDNN Persistent RNN API Calls

Speedup of unique cuDNN Persistent RNN calls for GNMT @ batch=32

cuDNN 7.4.1 (Nov 2018) vs. cuDNN 7.0.5 (Dec 2017)



20@ctnzr

TENSORCORES WITH FP32 MODELS
cuDNN 7.4.1 (Nov 2018) vs. cuDNN 7.0.5 (Dec 2017)

• Enabled as an experimental feature in the TensorFlow NGC Container via an environment variable (same for cuBLAS)
• Should use in conjunction with Loss Scaling

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

3.5x

Batch=32 Batch=128 Batch=32 Batch=128 Batch=32 Batch=128

Resnet-50 v1.5 SSD Mask-RCNN

Sp
ee

du
p

Average speedup of unique cuDNN convolution calls during training



21@ctnzr

NVIDIA DGX-2

1

2   

3

5

4

6  Two Intel Xeon Platinum CPUs

7  1.5 TB System Memory

21

30 TB NVME SSDs 
Internal Storage

NVIDIA Tesla V100 32GB

Two GPU Boards
8 V100 32GB GPUs per board
6 NVSwitches per board
512GB Total HBM2 Memory
interconnected by
Plane Card

Twelve NVSwitches
2.4 TB/sec bi-section

bandwidth

Eight EDR Infiniband/100 GigE
1600 Gb/sec Total 
Bi-directional Bandwidth

PCIe Switch Complex

8

Dual 10/25 GigE9



22@ctnzr

NVSWITCH: NETWORK 
FABRIC FOR AI

22

• 2.4 TB/s bisection bandwidth

• Equivalent to a PCIe bus with 
1,200 lanes

• Inspired by leading edge research that demands 
unrestricted model parallelism

• Each GPU can make random reads, writes 
and atomics to each other GPU’s memory

• 18 NVLink ports per switch



23@ctnzr

DGX-2: ALL-TO-ALL CONNECTIVITY
Each switch 
connects to 8 
GPUs

Each GPU 
connects to 6 
switches

Each switch 
connects to 
the other half 
of the system 
with 8 links

2 links on each 
switch reserved



24@ctnzr

FRAMEWORKS

Several AI frameworks 

Let researchers prototype rapidly

Different perspectives on APIs

All are GPU accelerated



25@ctnzr

AUTOMATIC MIXED PRECISION

Mixed precision training uses half-
precision floating point (FP16) to 
accelerate training

You can start using mixed precision today 
with four lines of code

This example uses AMP: Automatic Mixed 
Precision, a PyTorch library

No hyperparameters changed

Four Lines of Code => 2.3x Training Speedup in PyTorch (RN-50)

+ amp_handle = amp.init()
# ... Define model and optimizer
for x, y in dataset:
prediction = model(x)
loss = criterion(prediction, y)

- loss.backward()
+ with amp_handle.scale_loss(loss,
+       optimizer) as scaled_loss:
+   scaled_loss.backward()
optimizer.step()



26@ctnzr

AUTOMATIC MIXED PRECISION

Real-world single-GPU runs using
default PyTorch ImageNet example

NVIDIA PyTorch 18.08-py3 container

AMP for mixed precision

Minibatch=256

Single GPU RN-50 speedup for
FP32 -> M.P. (with 2x batch size):

MxNet: 2.9x

TensorFlow: 2.2x

TensorFlow + XLA: ~3x

PyTorch: 2.3x

Work ongoing to bring to 3x everywhere

Four Lines of Code => 2.3x Training Speedup (RN-50)



27@ctnzr

DATA LOADERS

Fast training means greater demands on
the rest of the system

Data transfer from storage (network)

CPU bottlenecks happen fast

GPU accelerated, user defined data 
loaders 

Move decompression & 
augmentation to GPU

Both for still images and videos

DALI: https://github.com/NVIDIA/DALI
Move all this to the GPU with

NVVL: https://github.com/NVIDIA/NVVL
Research video data loader using HW decoding: 

https://github.com/NVIDIA/DALI
https://github.com/NVIDIA/NVVL


28@ctnzr

SIMULATION

Many important AI tasks involve agents
interacting with the real world

For this, you need simulators

Physics

Appearance

Simulation has a big role to play in AI progress

RL needs good simulators – NVIDIA PhysX is now open source:

https://github.com/NVIDIAGameWorks/PhysX-3.4

https://github.com/NVIDIAGameWorks/PhysX-3.4


29@ctnzr

MAKE INGENUITY THE LIMITING FACTOR

High computational intensity + 

Programmability & flexibility fundamental 
for AI systems

Need a systems approach

Chips are not enough

And lots of software to make it all useful

Accelerated Computing for AI

Bryan Catanzaro
@ctnzr

https://twitter.com/ctnzr



