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Abstract

Gradient boosting decision trees (GBDTs) have seen widespread adoption in
academia, industry and competitive data science due to their state-of-the-art perfor-
mance in many machine learning tasks. One relative downside to these models is
the large number of hyper-parameters that they expose to the end-user. To max-
imize the predictive power of GBDT models, one must either manually tune the
hyper-parameters, or utilize automated techniques such as those based on Bayesian
optimization. Both of these approaches are time-consuming since they involve
repeatably training the model for different sets of hyper-parameters. A number
of software GBDT packages have started to offer GPU acceleration which can
help to alleviate this problem. In this paper, we consider three such packages: XG-
Boost, LightGBM and Catboost. Firstly, we evaluate the performance of the GPU
acceleration provided by these packages using large-scale datasets with varying
shapes, sparsities and learning tasks. Then, we compare the packages in the con-
text of hyper-parameter optimization, both in terms of how quickly each package
converges to a good validation score, and in terms of generalization performance.

1 Introduction

Many powerful techniques in machine learning construct a strong learner from a number of weak
learners. Bagging combines the predictions of the weak learners, each using a different bootstrap
sample of the training data set [1]. Boosting, an alternative approach, iteratively trains a sequence
of weak learners, whereby the training examples for the next learner are weighted according to
the success of the previously-constructed learners. One of the widely-used boosting methods was
AdaBoost [2]. From a statistical perspective, AdaBoost iteratively assigns weights to training
examples which has been shown to be equivalent to minimizing an exponential loss function [3].
The boosting technique proposed by [4], known as gradient boosting, generalizes this approach to
minimize arbitrary loss functions. Rather than fit the next weak learner using weighted training
examples, gradient boosting fits the next weak learner by performing regression on a function of the
gradient vector of the loss function evaluated at the previous iteration.

Recent gradient boosting techniques and their associated software packages have found wide success
in academia and industry. XGBoost [5], LightGBM [6] [7] and Catboost [8] all use decision trees as
the base weak learner and gradient boosting to iteratively fit a sequence of such trees. All packages
belong to the family of gradient boosting decision trees (GBDTs) and expose a large number of
hyper-parameters that the user must select and tune. This tuning can either by done by hand, which
can become a tedious and time-consuming task, or one can utilize techniques such as Bayesian hyper-
parameter optimization (HPO). While Bayesian optimization can automate the process of tuning the
hyper-parameters, it still requires repeatedly training of models with different configurations which,
for large datasets, can take a long time.
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In recent years, GPUs have seen widespread adoption in both on-premise and cloud computing
environments. All three of the aforementioned GBDT packages are actively developing GPU-
accelerated training routines, and all employ different algorithmic tricks to improve performance.
Clearly, if we can train each individual model more quickly, we can also accelerate the process of
hyper-parameter tuning. In this study, we present a comparison of the GPU-accelerated training
functionality currently on offer in GBDT packages in the context of hyper-parameter optimization.
Specifically, we will address the following three questions:

1. How much acceleration can be expected when using GPU-based training routines?

2. How well does this GPU-acceleration translate to reduced time-to-solution in the context of
Bayesian hyper-parameter optimization?

3. How well do the resulting models generalize to unseen data?

The aim of our work is to address the three questions above by taking a rigorous experimental
approach. We study the three aforementioned GBDT frameworks and evaluate their performance on
four large-scale datasets with significantly different characteristics.

Related work. To the best of our knowledge, our paper is the first attempt to compare the GPU-
acceleration provided by GBDT frameworks in the context of Bayesian hyper-parameter optimization
for a diverse set of datasets and learning tasks. However, there have been a number of previous
benchmarking efforts. In [9] and [10] the authors report the performance without using GPU
acceleration and employ a grid search to tune the hyper-parameters. The authors of [11] report the
GPU performance, but only for XGBoost and LightGBM and for a fixed set of hyper-parameters and
a single dataset. [12] compares the CPU implementations of LightGBM and XGBoost for binary
classification and ranking tasks and reports the GPU performance only for LightGBM. A fixed set
of hyper-parameters was used. [8] reports accuracy results for datasets with categorical features
showing the superiority of Catboost. The paper analyzes the Catboost GPU speedup improvement
over its CPU implementation. The authors also acknowledge that it is very challenging to compare
frameworks without hyper-parameter tuning, and opt to compare the three frameworks by hand-tuning
parameters so as to achieve a similar level of accuracy.

The paper is structured as follows. In Section 2 we review the GBDT algorithms. Section 3 presents
the frameworks used for hyper-parameter exploration. In Section 4 we describe the experimental
setup and the datasets. Section 5 first presents the GPU speedup results of the 3 GBDT algorithms
(question 1). We also study the algorithms in the context of Bayesian HPO and compare them by
runtime to discover the optimal hyper-parameters (questions 2 and 3). We conclude in Section 6.

2 Gradient Boosting Decision Tree Algorithms

Gradient boosting trees are tree ensemble methods that build a decision tree learner at a time by
fitting the gradients of the residuals of the previously constructed tree learners. Let D={(xi, yi) | i ∈
{1, .., n},xi ∈ Rm, yi ∈ R} be our dataset with n examples and m features. Given an ensemble of
K trees, the predicted outcome ˆy(x)K for an input x is given by the sum of the values predicted by
the individual K trees, ˆy(x)K =

∑K
i=1 fi(x), where fi is the output of the ith regression tree of the

K-tree ensemble. To build the (K + 1)-th tree, the method minimizes a regularized objective function
L =

∑n
i=1 `(yi, ŷi

K + fK+1(xi)) + Θ(fK+1), where `(yi, ŷi
K + fK+1(xi)) depends on the first

(and possibly second) moments of the strong learner loss function l(yi, ŷi
K), and Θ is a regularization

function that penalizes the complexity of the (K + 1)-th tree and controls the over-fitting.

To build a tree the method starts from a single node and iteratively adds branches to the tree until
a criterion is met. For each leaf branches are added so as to maximize the loss reduction after the
split (gain function). Iterating over all possible splits at each leaf is the bottleneck in training decision
tree-based methods. The GBDT algorithms in this paper tackle the splitting task in various ways.

XGBoost [5] proposes techniques for split finding and shows performance results for CPU training
only. Two split methods are proposed: exact and approximate. The exact method iterates at each
leaf over all the possible feature splits and selects the one that maximizes the gain. While very
precise, this technique is slow. Thus an approximate algorithm hist is proposed to calculate the split
candidates according to percentiles of features distributions (histograms). The percentiles can be
decided globally at the beginning of training or locally for each leaf.
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Two GPU implementations have been devised for approximate split finding. [13] proposes an
implementation gpu_hist for XGBoost and [7] for LightGBM. The XGBoost implementation builds
a boosting tree without using the CPU thus reducing the CPU-GPU communication overhead during
training. This method is fast, however, for large datasets such as [14], the GPU kernel fails due to
GPU memory limitations. The LightGBM implementation uses the GPU only to build the feature
histogram. The GPU kernel avoids using multi-scan and radix sort operations and reduces memory
write conflicts when many threads are used for histogram construction.

The LightGBM library also includes an enhanced GBDT method based on sampling, gradient-based
one-side sampling goss [6], where input examples with small gradients are ignored during training.
The paper proposes a CPU implementation, however the library allows us to use the goss boosting
type also in GPU. Thus we will use both the default gbdt (GBDT) and goss in our experiments.

Catboost is one of the most recent GBDT algorithms with both CPU and GPU implementations. It is
a library that efficiently handles both categorical and numerical features. The GPU optimizations
are similar to those employed by LightGBM. However, Catboost efficiently reduces the number of
atomic operations when performing simultaneous computation of 32-bin histograms. It efficiently
uses the shared memory per warp of threads and by using a good histogram layout it reduces write
conflicts across threads. This translates in a high GPU occupancy.

3 Hyper-Parameter Exploration and Optimization

To analyze the GPU efficiency of the GBDT algorithms we employ a distributed grid search frame-
work. To evaluate how well the algorithms generalize to unseen data and to fine-tune the model
parameters we use a HPO framework based on Bayesian optimization.

3.1 Distributed Grid Search

We implemented the distributed grid search using Apache Spark. First we load the training and
validation datasets into memory on the master node. The datasets are then broadcast to each executor.
Next, a resilient distributed dataset (RDD) is created consisting of all hyper-parameters sets that
should be evaluated. Each hyper-parameter partition is assigned to one executor. Each executor then
proceeds to train the GBDT model for all of the hyper-parameters assigned to it. The models are
evaluated on the validation set and the resulting evaluation metrics are collected on the master node.

One of the issues we encountered was how to correctly manage the GPUs from Spark. The system on
which we deployed has 8 GPUs: 4 servers, each with 2 GPUs. We wanted to create a Spark RDD
with 8 partitions, whereby the data from each partition is mapped to a unique GPU. While this sounds
straight-forward, there is a hidden complexity when one executes a distributed function call on an
RDD, e.g., the Spark mapPartitions operation. By design, the executor handling each partition
does not know on which host it is running and thus does not know which of the 2 GPU device IDs it
can use. To overcome this challenge, we implement a file-system-based locking scheme. For each
partition we clear a temporary directory of any previous lock files that may exist. Then for each
partition we write a lock file containing the partition index, lock0 to lock7, into this same directory.
After this stage, on each of the 4 servers, the temporary directory contains 2 lock files corresponding
to the 2 partitions assigned to that server. Next, each partition reads a list of the lock files, sorts the
filenames, and identifies its corresponding location in this sorted list. This way, each partition on a
given server is assigned a number between 0 and 1 that corresponds to a unique GPU ID.

For the CPU experiments, we used 1 executor/server to fully utilize all the available CPU threads.

3.2 Bayesian Optimization

Grid search requires extensive manual work to fine-tune the parameters and may be arbitrary in
the choice of the grid points. Hyper-parameter optimization (HPO) aims to automatize this tuning
process. In Bayesian optimization, the prevalent approach to HPO, the validation performance of
the algorithm is treated as an unknown function of a hyper-parameter vector, f(x), modeled through
a probability distribution inferred from a regression (surrogate) model. An acquisition function is
used to select hyper-parameter sets that are both informative and promising according to the learned
model. For regression, popular approaches use Gaussian Processes (GP) [15].
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Table 1: Datasets characteristics.

Examples Features Sparsity Task
Dataset Train Validation Train Train
Higgs [18] 10500000 500000 28 7.89% Binary
Epsilon [14] 400000 100000 2000 0% Binary
Microsoft [19] 723412 241521 136 68.13% Multi-class
Yahoo [20] 473134 165660 699 37.22% Multi-class

Table 2: Hyper-Parameter Space for Grid-Search and HPO.

Iterations Depth Regularizer Learn. Rate Feature Frac. Boosting
Grid Search

Catboost 40,80,160,320,480 4,8,10,12 0,1,100 0.1,0.3 – –
XGBoost 40,80,160,320,480 4,8,10,12 0,1,100 0.1,0.3 0.8,1.0 –
LightGBM 40,80,160,320,480 4,8,10,12 0,1,100 0.1,0.3 0.8,1.0 gbdt,goss

Hyper-Parameter Optimization (HPO)
Catboost [16,1000]* [2,14]* [10−2, 105] [0.01, 1] – –
XGBoost [16,1000] [2, 14] [10−2, 105] [0.01,1] [0.01, 1] –
LightGBM [16,1000] [2, 14] [10−2, 105] [0.01,1] [0.01, 1] gbdt,goss

We use HPO in our work to fine tune the models hyper-parameters and to compare the best general-
ization performance of the algorithms within a given parameter range. We used a GP model with
Matérn 5/2 kernel and expected improvement as the acquisition function [15, 16]. As HPO library we
chose to use [17] due to its flexibility in terms of both regression models and acquisition functions.
Bayesian optimization consists of iteratively evaluating new parameters according to an acquisition
function, and updating the surrogate model with their results until a certain evaluation budget is
exhausted. In our case, we stop after 150 evaluations.

4 Experimental Setup

Datasets. Table 1 summarizes the datasets used in our experiments. Higgs and Epsilon are modeled
as binary classification tasks. Microsoft (MSLR-WEB10K dataset) and Yahoo consist of feature
vectors extracted from query-URL pairs with relevance labels from 0 (irrelevant) to 4 (perfectly
relevant). Both problems can be modeled either as ranking or 5-class classification tasks. We chose
the latter, as not all of the GDBT algorithms had ranking loss functions available at the time of the
experiments. For the GPU speedup results in Section §5, we split the datasets into training and
validation sets as shown in Table 1. Regarding the generalization performance in §5, we employed
the validation set as test set, and instead used a 25% split of the training set as validation set.

Evaluation Metrics. For Higgs and Epsilon, we calculate AUC-ROC, and for Microsoft and Yahoo
the normalized discounted cumulative gain (NDCG) [21] metric. We compute the expected relevance
when class-probabilities are available (otherwise take the most probable relevance, for Catboost) and
take the 10 most relevant items to a query. We then compute the actual DCG and divide it by the
DCG of the ideal item ordering to obtain NDCG-10.

Hyper-Parameters Space. In Table 2 we show the parameter set1 used for both grid search and
HPO experiments. The HPO ranges are wider than the extremes of the grid so as to avoid a priori
assumptions, and to maximize the chances of including the optimum configuration. The GBDT
algorithms share the same parameters, with the next exceptions: Catboost does not have feature
fraction parameter, and LightGBM has two boosting types gbdt and goss. Finally, the number of
leaves in LightGBM equals 2depth. We remark that smaller ranges were employed for Catboost on
Epsilon for the number of iterations and the tree depth to fit in the GPU memory.

Hardware and Library Setup. For all experiments we used 4 servers, each with 8-core Intel(R)
Xeon(R) CPU E5-2630 v3, 64 GB RAM, and 2 NVIDIA GTX 1080 TI GPUs. Regarding the libraries,
we used XGBoost 0.7, LightGBM 2.1.0, and Catboost 0.5.2.1.

1We selected this parameter set to also run HPO in a reasonable amount of time, e.g. weeks.
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Figure 1: GPU vs. CPU performance across algorithms. (a) XGBoost, (b) LightGBM, (c) Catboost.

5 GPU vs. CPU Performance and Hyper-Parameter Optimization Results

We first compare the speedup of the GPU vs. CPU implementation per GBDT algorithm. We collect
the speedup results for the grid search hyper-parameter combinations in Table 2. Fig. 1a)-c) show
results for XGBoost, LightGBM and Catboost, respectively. XGBoost exhibits the highest speedup
7.26x on average and 3.32x at the median, followed by Catboost with an average speedup of 3.7x
and 2.17x at the median. LightGBM has a lower average speedup of 2.35x and 0.75x at the median.
For LightGBM we suspect that the goss boosting routine is not yet fully optimized on GPU, thus
negatively impacting the average speedup. Indeed, when excluding the goss results, LightGBM
exhibits a higher average speedup of 3.57x and 1.32x at the median.

Comparing the GPU training time of the GBDT frameworks for a fixed set of hyper-parameters is
difficult since the hyper-parameters do not necessarily align and accuracy will not necessarily match.
Thus, for a fair comparison, we study the performance in the context of HPO. Specifically, we want
to know which GPU-accelerated GBDT algorithm can attain a good validation score in the shortest
time when using the Bayesian optimization framework described in Section 3.2.

In Figure 2 we plot the maximum validation score achieved vs. the total HPO runtime for all datasets.
We plot three HPO runs per algorithm and dataset, each run with 150 iterations. In Table 3 we report
the best validation score attained using HPO, as well as the score on the unseen test data for the
resulting hyper-parameter configuration. As a baseline, we also include the scores achieved by a toy
classifier that just predicts class labels according to their frequency in the training data. We would
like to note that Catboost does not provide a multi-class classification loss function for GPU training2.
Thus, we implemented it as multiple one-vs-all binary classifications (m_catboost).

Higgs - Figure 2a). For the HIGGS dataset, we observe that XGBoost and Catboost can discover
a configuration that leads to a good score much faster than LightGBM. This can be attributed to
our previous observation, that XGBoost and Catboost can benefit much more significantly from
GPU acceleration relative to LightGBM. However, while slower, LightGBM eventually finds a
configuration that leads to a noticeably better validation score. Furthermore, this configuration
generalizes and provides the best score on the test set.

Epsilon - Figure 2b). XGBoost fails on Epsilon due to memory errors. While we again see that
Catboost can evaluate configurations much faster, we do not observe LightGBM finding a better
solution after more time based on this number of HPO iterations. In this case, the solution that
Catboost finds generalizes well and provides the best score on the test set.

Microsoft - Figure 2c). For this dataset, which is a multi-class classification task, we again see that
XGBoost can locate a good configuration significantly faster than LightGBM, but that after some
time LightGBM is able to find a configuration that results in a higher validation score. However, in
this case, the improvement in the validation score does not carry across to the test set, and the solution
XGBoost found is the winner. We also observe that Catboost cannot locate a good configuration of
hyper-parameters for this task. We note that for all algorithms, including the baseline (naive classifier
that predicts the labels according to their probability distribution in the training set), the validation
score achieved is significantly higher than the corresponding test score. This effect is not caused
by over-fitting the validation set, but is instead related to imbalance in the statistics between the
validation and test set. While a stratified split was utilized to ensure that the distribution of class

2Starting with version 0.10.0, Catboost provides native GPU support for multi-class classification tasks.
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Table 3: Best test scores across algorithms and datasets.

Dataset Baseline XGBoost LightGBM Catboost
Test Val Test Val Test Val Test Val

Higgs 0.4996 0.5005 0.8353 0.8512 0.8573 0.8577 0.8498 0.8496
Epsilon 0.4976 0.5008 - - 0.9513 0.9518 0.9537 0.9538
Microsoft 0.2251 0.3974 0.4917 0.6443 0.4871 0.6473 0.3782 0.5492
Yahoo 0.5802 0.8106 0.7983 0.9146 0.7965 0.9142 0.7351 0.8849

labels is preserved across train, validation and test sets, the NDCG score also depends on the statistics
of the query IDs, which vary significantly.

Yahoo - Figure 2d). As for the other multi-class classification task, we find that Catboost does not
find a good solution. XGBoost is significantly faster, and can find a good configuration. Furthermore,
the solution XGBoost finds also provides the best score on the test set.
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Figure 2: Max. validation score vs. total HPO runtime (a) Higgs (b) Epsilon (c) Microsoft (d) Yahoo.

To summarize, we find that, while XGBoost can explore its space of hyper-parameters very fast, it
does not always locate the configuration that results in the best score. While it clearly wins in both
multi-class ranking tasks (Microsoft, Yahoo), for the Higgs dataset it loses to LightGBM, despite the
latter being significantly slower. Furthermore, for the Epsilon dataset XGBoost cannot be used due to
memory limitations. Clearly, there is no one-size-fits-all solution to optimizing GBDT models, and
we hope that these results may assist developers of the respective packages by identifying learning
tasks for which there is still room for improvement.

6 Conclusions

We have presented an in-depth experimental analysis of three state-of-the-art GBDT packages:
XGBoost, LightGBM and Catboost. We have quantified the level of GPU acceleration that is
currently provided by each of the packages, and evaluated how well this speedup translates into
reduced time-to-accuracy in the context of Bayesian HPO. We have observed that, for a fixed set of
hyper-parameters, XGBoost provides the largest reduction in training time when using a GPU relative
to a CPU. Moreover, we observe that one is often able to utilize this speedup to converge to a good
set of hyper-parameters in a short time. However, there are tasks for which LightGBM, albeit slower,
can converge to a solution that generalizes better. Furthermore, for datasets with a large number of
features, XGBoost cannot run due to memory limitations, and Catboost converges to a good solution
in the shortest time. Therefore, while we observe interesting trends, there is still no clear winner in
terms of time-to-solution across all datasets and learning tasks. The challenge of building a robust
GPU-accelerated GBDT framework that excels in all scenarios is thus very much an open problem.
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