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Abstract

Modern machine learning (ML) systems are comprised of complex ML pipelines
which typically have many implicit assumptions about the data they consume (e.g.,
about the scales of variables, the presence of missing values or the dictionary of
categorical values). Violations of these assumptions can result in crashes or wrong
predictions. We therefore present Deequ, a library that allows users to explicitly
specify their assumptions about the data in a declarative way. Deequ enables the
efficient automatic validation of these assumptions on large datasets. It is an open
source library based on Apache Spark and meets the requirements of production
use cases at Amazon.

Data is at the center of modern enterprises and institutions. Online retailers, for example, rely on
data to support customers making buying decisions, to forecast demand [3] or to schedule deliveries.
Missing or incorrect information seriously compromises any decision process. A common trend
across different industries is to automate business processes with machine learning (ML) techniques
on large datasets [7, 12]. Data-specific problems with ML pipelines commonly occur because of
two reasons, erroneous data and missing data. Erroneous data, e.g., out-of-dictionary values for
categorical variables or accidental changes in the scale of computed features can cause ML pipelines
to unexpectedly change their predictions which is challenging to detect [8]. Furthermore, some model
classes cannot handle missing data, and therefore missing entries are commonly replaced by default
values. These default values need to be carefully chosen however as to not unexpectedly change the
models’ predictions [11]. Another hard-to-detect source of problems is a distribution shift between
training data and data to predict on. Machine learning specific sanity checks [13, 4] and explicit data
validation components [3, 2, 4, 5, 9] are actively being researched for exactly these reasons.

Data validation for such scenarios is becoming increasingly challenging, as data lives in many
different places (databases, key-value stores, distributed filesystems) and comes in many different
formats. Many such data sources do not support integrity contraints and data quality checks, and often
there is not even an accompanying schema available, as the data is consumed in a ‘schema-on-read’
manner, where a particular application takes care of the interpretation. We recently proposed Deequ1,
an open-source library for automating the verification of data quality at scale [10] with Apache Spark.
Deequ provides a declarative API, which combines common quality constraints with user-defined
validation code, and thereby enables unit tests for data. It allows users to explicitly and declaratively
state their expectations about the data which they consume or produce. Furthermore, Deequ allows
users to automate the data validation process by integrating the tests into ML pipelines. In case
of violations, data can be quarantined and data engineers can be automatically notified. Deequ is
designed to scale to datasets with billions of rows, given that the constraints to evaluate are chosen
carefully.

1https://github.com/awslabs/deequ

https://github.com/awslabs/deequ


Example. We exemplify the unit tests for data provided by Deequ in a fictitious use case of predicting
clicks on movie trailers from observed impressions. We assume that we have already trained a
model and now wish to predict clicks for new unseen data. Listing 1 shows a test for the implicit
assumptions we might want to enforce on the unseen data. We assume that each sample contains
a boolean value in the target column has_clicked. The column trailer_duration contains the
length of the trailer in seconds. We check that the data is of type integer and that each trailer has
a duration between 30 and 300 seconds. This allows us to catch errorenous samples that would be
generated if someone accidentally changed the scale of this column from seconds to milliseconds or
accidentally fills up missing values with 0 (the default value for integers in many languages). Next,
we issue constraints on the categorical genre column. We demand that there are no missing values
and that we only see genres that we have already observed in the training data (by constraining the
range to the previously computed set genresSeenInTrainingData). Additionally, we compare the
distribution of genres in the data to predict on to the corresponding distribution in the training data
via the histogramSatisfies constraint. The user-defined function notDiverged compares the
categorical distributions in the genre column of the training set and test set (e.g., with a G-test [6])
and returns a boolean value afterwards. Finally, we demand that every sample has an associated
movie_id and that the overall number of distinct movies in the unseen data is not larger than the
number of movies we would expect in the system.

// Computed in advance
val numAvailableMovies = ...
val genresSeenInTrainingData = ...
val distInTrainset = ...

// assumptions about data to predict on
val validationResultForTestData = VerificationSuite ()
.onData(testSet)
.addCheck ()
.isComplete("has_clicked", "genre", "movie_id")
.hasDataType("has_clicked", Boolean)
.hasDataType("trailer_duration", Integral)
.isContainedIn("trailer_duration", 30 to 300)
.isContainedIn("genre", genresSeenInTrainingData)
.histogramSatisfies("genre", { distInTestset =>

notDiverged(distInTrainset , distInTestset) })
.hasCountDistinct("movie_id", _ <= numAvailableMovies)

.run()

if (validationResultForTestData.status != Success) {
// abort pipeline , notify data engineers

}

Listing 1: Test data validation in a fictitious click prediction use case for movie trailers.

Execution. Deequ identifies the data statistics required for evaluating the constraints and generates
queries in SparkSQL [1] with custom designed aggregation functions in order to compute the
statistics. For performance reasons, it applies multi-query optimization to enable scan-sharing for the
aggregation queries in order to minimize the number of required passes over the input data. Once the
data statistics are computed, Deequ invokes the user-defined validation functions contained in the test
code (e.g., _ <= numAvailableMovies) and returns the evaluation results to the user. Additionally,
it supports efficient constraint evaluation on changing data (e.g., incrementally growing logs) with a
stateful abstraction (which we do not show here due to lack of space).

Advanced Features and Future Work. Deequ contains several advanced features not covered in
the example. In cases where it is difficult to supply exact thresholds for certain data statistics (e.g.,
due to seasonality), we allow users to plug in anomaly detection algorithms that can supply sensible
thresholds given past data quality metrics. Furthermore, we provide tools to profile large datasets
and automatically suggest constraints based on the resulting profiles. In future work, we intend to
investigate methods for the automatic generation of tests for specific ML model classes and data to
be used in ML pipelines.
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