Don’t Unroll Adjoint: Differentiating SSA-Form
Programs

Michael J Innes
Julia Computing, Inc.
mike.j.innes@gmail.com

Abstract

This paper presents reverse-mode algorithmic differentiation (AD) based on source
code transformation, in particular of the Static Single Assignment (SSA) form used
by modern compilers. The approach can support control flow, nesting, mutation, re-
cursion, data structures, higher-order functions, and other language constructs, and
the output is given to an existing compiler to produce highly efficient differentiated
code. Our implementation is a new AD tool for the Julia language, called Zygote,
which presents high-level dynamic semantics while transparently compiling adjoint
code under the hood. We discuss the benefits of this approach to both the usability
and performance of AD tools.

1 Introduction

Reverse-mode algorithmic differentiation (AD) [[19] is at the heart of recent developments in machine
learning (ML) and deep learning [2]. ML systems place extreme demands on the tools used to build
them; they typically require the highest performance, yet researchers increasingly need the flexibility
of a fully differentiable programming language [11]].

AD systems face a tradeoff between providing an expressive, full-featured programming model and
producing optimised programs [[14]. Current ML frameworks use tracing approaches to record the
numerical operations in the program, which is simple to implement but has significant limitations.
Preserving host language semantics (e.g. control flow) requires dynamically building the trace [[13],
which adds overhead and precludes many optimisations. Saving and compiling traces [3]] helps
performance at the cost of significantly reduced expressiveness.

We present AD over a Static Single Assignment (SSA) representation of programs in a way that
supports control flow, higher-order functions and nested derivatives. The differentiated code can be
further fed into a traditional compiler such as LLVM [[12]], which results in an extremely efficient
derivative program. Further, it opens up the opportunity for robust traditional compiler techniques
to be extended to machine learning, enabling kernel fusion or compilation for accelerators with no
artificial limitations on the kinds of models that researchers can express.

We additionally introduce Zygote, a working implementation of this technique which augments
the Julia compiler [4] and is designed for use with the Flux machine learning stack [10]. We
discuss Zygote’s interaction with Julia’s programming model and compiler, and the performance
characteristics that result from this combination.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

2 Tapes & Wengert Lists

2.1 Notation & Background

Given a target program that outputs a scalar [(typically a loss or objective to be minimised), we
write the gradient 91/0x as Z. For uniformity we do not specify the derivatives of component
functions like sin(x) or a x b directly in the rules of differentiation, but instead treat these as
handled via a higher-order differentiation function 7. Given a function y = f(x1, z2,...), we write
y, By = J(f,x1,22,...); J returns the usual result y as well as a pullback function B,. Then
Z1, T2, ... = B,(7); the pullback accepts the gradient with respect to y and returns gradients with
respect to each input z;. Pullbacks are linear functions which implement the chain rule for f, as in
equation [I] and for mathematical primitives they are easily written down. Some examples are shown
in Table[1l

T =

ol ol dy _

This notation has the benefit of treating program subrou-

tines uniformly with mathematical primitives. In the vec-]

tor case Jy/Ox may be a large Jacobian which we wish Table 1: .P ullback.s for some simple
to avoid instantiating explicitly. Calling 7 with a user- mathematical functions.

defined f can generate an appropriate pullback via some

AD technique (such as the one we describe). FUNCTION PULLBACK
y=a+b (¥, 9)
2.2 Differentiating Wengert Lists y=axb (§ x b,y X a)
y = sin(x) 7 x cos(z)
Consider the following mathematical function, which may y = exp(z) yxXy
be part of our target program. We assume that y is further ~ y = log(=) y/x
used to calculate [, and that we know 91/0y.
a
= 7b = —_—
y f(a) a + b2
We can rewrite this equivalently by naming each intermediate result.
y1 = b?
Y2 = a-+y1
a
Ys = —
Y2

This form can be viewed as a limited programming language; it is often referred to as a Wengert list,
tape or graph [1]. The Wengert list is easy to differentiate. First wrap all function calls with J to
create a primal version of f.

ylvBl = j(A;b,Q)
y2782 = \7(+7aay1)
y3783 = \.7(/767/73/2)

Given the gradient y;, we can call the pullback B; to get gradients for the inputs to y;. Where a
variable x is used multiple times, each corresponding pullback produces a contribution to the gradient
(the a; below) which must be summed, as per the multivariable chain rule.

By applying these steps we can begin with the gradient § = 1 and proceed in reverse over the list to
get Jy/da and Oy /0b. This can be realised either by interpreting the Wengert expression in reverse,
or by explicitly creating an adjoint expression as follows.

[\

Realising this code as a function, with %3 as an argument, creates the pullback for f.

3 Static Single Assignment

3.1 Generalising the Wengert List

SSA form [6] generalises the Wengert list with goto-based control flow, while preserving the explicit
data flow that makes analysis straightforward. The Wengert-list-like code between labels and goto
instructions is referred to as a basic block. Our SSA notation uses numbered variables like %1, %2
etc. and for convenience uses multiple return values, which can be simulated with tuples. The adjoint
code also makes use of underlined "alpha nodes" like %1 which refer to values from the primal
computation — just like primitive pullbacks close over values — and will be generalised in the case of
control flow.

Primal code is created much as with simpler Wengert lists. To construct the adjoint, observe that
unrolling the adjoint must be equivalent to constructing the adjoint for an unrolled primal. Thus, all
basic blocks must be run in reverse order; there is an (iteration of an) adjoint block for each primal
one. To achieve this we invert the primal’s control flow graph (CFG) and insert dummy ¢ nodes into
the primal to record and replay control flow in reverse. After this the basic blocks themselves can be
differentiated.

As with the Wengert list, data flow in the adjoint is reversed; a primal SSA definition %z corresponds
to the single usage of the gradient %z with a pullback, and uses of %z correspond to contributions
to the gradient. As SSA definitions dominate their uses, so gradient uses post-dominate their
contributions. The complication is that data flow crosses between basic blocks, and a usage of %z
may not actually execute depending on control flow. Thus the adjoint must only take into account
gradients that dynamically reach the current block; this can be achieved by propagating gradients in
a reversed dataflow analysis of the primal, and inserting zeros and ¢ nodes into the adjoint where
necessary. For the purpose of finding reaching gradients of %, primal ¢ nodes involving %z can be
treated as equivalent to identity(%z).

SSA definitions may take on different values in each iteration of a primal block; alpha nodes refer to
the value in the corresponding primal iteration. Given the reversed block order the right semantics
can be achieved by storing values on a stack, and alpha nodes are then resolved by popping from
the stack [8]. This is not the only possible approach; for example, the values could be recomputed
(checkpointing), and mixed approaches are able to make time-space tradeoffs [9]]. In a reversible
neural network [3]], the core adjoint transformation remains the same but alpha values will be
re-calculated in reverse.

For an example of these rules in practice, consider a simple implementation of ™ for natural n.

function pow(x, n)

r =1
while n > O
n-=1
r *= X
end
return r
end

The primal code illustrates how loops are represented in SSA form, via ¢ nodes. Both relevant
variables, r and n, are explicitly carried between the two blocks comprising the loop.

block #1:
%1 <+ ¢(#0 — false, #2 — true)
%2 «+ d(#0 — 1, #2 — %6)
%3 < ¢(#0 — n, #2 — %5)
%4 < %3 >0
goto #3 if not %4
block #2:
%5 «+— %3 — 1
%6, %7 + T (x, %2, x)
goto #1
block #3:
return %2

In the adjoint code, we again have two ¢ functions in the loop header, effectively tracking T (%1)
and 7 (%2). Block 1 has two predecessors, block 2 and the implicit block 0 (which corresponds to
the return block in the primal). Only r is used in that block (as a return value), so Z has no gradient
contribution and must be initialised to 0. x is used once in each iteration of the loop, so we accumulate
Z across all iterationsP_-] Note also the alpha nodes referring to both the recorded branch conditions
and the backpropagators for x; these will be further processed into stack operations.

block #1:
%1 + d(F#0 — 0, #2 — %5)
%2 < d(#0 — 7, #2 — %3)
goto #4 if not %1
block #2:
%3, %4 <+ %7(%2)
%5 + %1 + %4
goto #2
block #3:
return %2, 0

3.2 Handling Language Features

SSA is a very general representation that does not detail much of a language’s semantics (e.g. type
system, data structures, memory model). Differentiation depends on these details, largely by way of
the primitive definitions provided. For example, the IR may not only contain numerical operations,
but also many supporting functions such as for modifying state or manipulating data structures, and
we need pullbacks for these operations.

The most fundamental data structure is the cons cell, a tuple of two values like C' = (z1,z2). If
we call first (C) to retrieve the first element we must then find the gradient with respect to C' in
the adjoint program. We create an adjoint object C', which mirrors the structure of C' while storing
the gradient of each internal element (71, T2). Summing adjoint objects sums the elements. The
pullbacks for operations on C' are given in Table[3.2]

We can now differentiate any function of cons cells.
Any other data structure differs only in number of fields
or names of accessor functions.

Table 2: Pullbacks for cons cells
FUNCTION PULLBACK

To handle mutation, consider a one-element “box" struc- 5::1%2?; ggl’ v2) (ﬁrst(CC(’))n,Ss(?oOn)d(C))

ture B. We can get(B) to retrieve the current stored y = second(C) cons(0,7)

!Seemingly, so also is r. But note each loop iteration sees a different definition of r, so the gradients are
independent. A benefit of SSA form is that this distinction becomes syntactically clear, and need not be handled
specially.

Table 4: Benchmarks on some simple functions.

BENCHMARK | FORWARD ZYGOTE PYTORCH REVERSEDIFF
SINCOS 15.9N8 20.7NS 69,900NS 670NS
Loor 4.17pus 29.5us 17,500u8 171us
LoGSUMEXxP 0.96us 1.26us 219us 15.9us
LOGISTIC REGRESSION 4.67us 17.6us 14218 89.9us
2-LAYER MNIST MLP 27.7uS 207us 369us N/A

value, and set(B,) to erase that value and replace it
with . The adjoint object B is also a box, which we retrieve via lookup rather than by pullback
return values. The pullbacks are given in table

A mutable cons can be seen as a boxed cons or a cons
of boxes; in either case it generalises similarly to other
mutable data structures. For example, a stack can be
implemented as a box containing a cons-based linked = = get(B) set(B, get(B) +)
list. One caveat: pullbacks frequently close over their set(B, x) (z = get(B);set(B,0); T)
inputs (for example, both input arrays in matrix mul-
tiplication), and if they are mutated the pullback will
be incorrect. Arrays must therefore either be immutable, be copied on capture, or have mutations
recorded and reversed during the adjoint program. This is generally not true for operations on data
structures, so things like stacks need no special support.

Table 3: Pullbacks for boxes
FUNCTION PULLBACK

Closures are just objects with a call method; the fields of the object represent the closure’s envi-
ronment. When calling closures we need to recognise a hidden zeroth argument, the closure itself,
and produce an adjoint for that object. In our compiler all functions actually accept this hidden
argument—which may be empty as a special case—so both closures and higher-order functions are
supported with no extra effort.

Given that adjoint code makes use of both stacks and closures, the above ensures that the AD can
consume its own output, thus allowing higher-order derivatives via nested application of 7 (as in

J(T, [,).

These extensions are enough to support a very general subset of the Julia language, thanks to its
simple and very uniform semantics. In other cases (such as when class-based objects or lower-level
system routines are used), more may be needed. For example, a matrix multiplication might be
expressed either by A * B or by alloc/free and passing of pointers, which is harder to differentiate
efficiently. For this reason AD is more effective in high-level compiled languages (e.g. Julia, Swift,
Rust, Nim) than traditional ones such as C/C++, Fortran and LLVM IR, even though these can all be
expressed as SSA.

4 Results

Zygote is designed to generate adjoint code amenable to Julia’s standard compiler analysis and
optimisation passes, the most important of which is type inference. Julia’s introspection tools can be
used to check that generated output is reasonable. For example we show that Julia is able to fully
infer the adjoint of a simple neural network, including proving non-differentiability (gradient of type
Nothing). This works just as well on larger models such as VGG19, and this level of static analysis
is what enables us to target TPUs without tracing [[7].

After optimisation, the code for gradient (pow, 2, 3) is similar to the left below (converted to
high-level Julia code for ease of reading). The stacks emitted in adjoint code have low overhead
at less than 10 nanoseconds per operation on a typical CPU; this is noticeable compared to scalar
numerical operations, but generally negligible in array code. It compares especially favourably to
constructing and differentiating a program trace, as in other dynamic AD systems, which has typical
overhead in the microseconds per operation [17]].

loss(m, x) = sum(m(x)) function grad_pow(x, n)
m = Chain(Dense(10,5,relu) ,Dense(5,2)) r=1
x = rand(10) Bs = Tuple{Int,Int}[]
Qcode_typed(gradient (loss, m, x)) while n > 0
Tuple{NamedTuple{(:layers,),Tuple{ push! (Bs, (r, x))
Tuple{NamedTuple{(:w, :b, :f), r *= X
Tuple{Array{Float64,2}, n-=1
Array{Float64,1}, end
Nothingl}}, dx = 0
NamedTuple{(:w, :b, :f), dr = 1
Tuple{Array{Float64,2}, for i = length(Bs):-1:1
Array{Float64,1}, (r, x) = Bs[i]
Nothing}}} dx += dr*r
}F,Array{Float64,1}} dr = dr*x

end

return dx

end

To confirm this in more realistic cases, Table 4] provides a set of simple benchmarks between a plain
Julia forward pass, Zygote, PyTorch [15] and ReverseDiff [[18]] (a tracing-based AD with optional
compilation). These mix scalar (sincos and loop) and vector examples to both stress-test AD
overhead and show more realistic speedups, respectively.

These results can be compared to the most notable existing source-to-source AD systems, Tapenade
[9]] and StalinV [[16]. Tapenade is capable of producing very fast code that is similarly amenable to
the optimisations of existing Fortran and C compilers. However, it operates directly on source files
(requiring “caller-derives" usage that prevents libraries from abstracting over differentiation), and
lacks generality (its output often needs modification before it can be differentiated again). Meanwhile,
StalinV is mathematically general and provides a convenient higher-order-function interface, but
only operates on a A-calculus IR, a non-standard representation that eschews a large body of work on
optimising compilers.

Our contribution is thus to provide a best of both worlds: a system that looks to the user like StalinV/,
but to the compiler like Tapenade. Our results confirm that we can reach the quality of hand-written
derivatives without modifications to an existing optimising compiler.

5 Conclusion

This paper presents a system for differentiation via the 7 function and pullbacks, and uses these to
build a system for differentiation via the [function and pullbacks. Current ML frameworks face
a fundamental tradeoff between performance and flexibility, but we hope to have shown that this
tradeoff is not fundamental. Our new AD, Zygote, supports a full range of language features—from
control flow to macros—while producing highly optimised code.

By transforming SSA-form IR we can differentiate rich and expressive programs with extremely low
run-time overhead, while opening up opportunities for even more optimisation in future. As SSA
is used as an intermediate representation (IR) by many recent language compilers, differentiation
could be added as a first-class language feature to many modern compiled languages, enabling truly
differentiable programming.

Acknowledgements

Thanks to Avik Sengupta for many insightful conversations. The manuscript was also much improved
through feedback from Simon Byrne, Elliot Saba and Deniz Yuret. The implementation was greatly
aided by compiler work done for Julia 1.0 by Jarrett Revels, Keno Fischer, Jameson Nash and Jeff
Bezanson. The work owes much to enlightening conversations and inspirational work done by people
at Julia Computing and the wider Julia community: all of the above along with Viral Shah, James
Bradbury, Tim Besard, Simon Danisch, Lyndon White, Shashi Gowda, and many more.

References

(1]

(2]

3

—

[4

—

(3]

[6

—_

[7

—

[8

—

[9

—

(10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]
(18]
(19]

M. Bartholomew-Biggs, S. Brown, B. Christianson, and L. Dixon. Automatic differentiation of algorithms.
Journal of Computational and Applied Mathematics, 124(1-2):171-190, 2000.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine
learning: a survey. Journal of machine learning research, 18(153):1-153, 2017.

J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Desjardins, D. Warde-Farley,
I. Goodfellow, A. Bergeron, et al. Theano: Deep learning on gpus with python. In NIPS 2011, BigLearning
Workshop, Granada, Spain, volume 3, pages 1-48. Citeseer, 2011.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing.
SIAM review, 59(1):65-98, 2017.

B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham. Reversible architectures for
arbitrarily deep residual neural networks. arXiv preprint arXiv:1709.03698, 2017.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph. ACM Transactions on Programming Languages and
Systems (TOPLAS), 13(4):451-490, 1991.

K. Fischer and E. Saba. Automatic full compilation of julia programs and ml models to cloud tpus, 2018.

R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM Transactions on Mathematical
Software (TOMS), 24(4):437-474, 1998.

L. Hascoet and V. Pascual. The tapenade automatic differentiation tool: principles, model, and specification.
ACM Transactions on Mathematical Software (TOMS), 39(3):20, 2013.

M. Innes. Flux: Elegant machine learning with julia. Journal of Open Source Software, 2018.

M. Innes, S. Karpinski, V. Shah, D. Barber, P. Stenetorp, T. Besard, J. Bradbury, V. Churavy, S. Danisch,
A. Edelman, et al. On machine learning and programming languages. 2018.

C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis & transformation.
In Proceedings of the international symposium on Code generation and optimization: feedback-directed
and runtime optimization, page 75. IEEE Computer Society, 2004.

D. Maclaurin, D. Duvenaud, and R. P. Adams. Autograd: Effortless gradients in numpy. In ICML 2015
AutoML Workshop, 2015.

G. Neubig, C. Dyer, Y. Goldberg, A. Matthews, W. Ammar, A. Anastasopoulos, M. Ballesteros, D. Chiang,
D. Clothiaux, T. Cohn, et al. Dynet: The dynamic neural network toolkit. arXiv preprint arXiv:1701.03980,
2017.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. 2017.

B. A. Pearlmutter and J. M. Siskind. Reverse-mode ad in a functional framework: Lambda the ultimate
backpropagator. ACM Transactions on Programming Languages and Systems (TOPLAS), 30(2):7, 2008.

PyTorch Team. PyTorch, a, year in... pytorch.org/blog/a-year-in, 2018. Accessed: 2018-09-22.
J. Revels. Reversediff.jl. [github.com/JuliaDiff/ReverseDiff. j1, 2018. Accessed: 2018-09-22.

B. Speelpenning. Compiling fast partial derivatives of functions given by algorithms. Technical report,
Ilinois Univ., Urbana (USA). Dept. of Computer Science, 1980.

pytorch.org/blog/a-year-in
github.com/JuliaDiff/ReverseDiff.jl

	Introduction
	Tapes & Wengert Lists
	Notation & Background
	Differentiating Wengert Lists

	Static Single Assignment
	Generalising the Wengert List
	Handling Language Features

	Results
	Conclusion

