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Abstract
Machine Learning is transitioning from an art and science into a technology avail-
able to every developer. In the near future, every application on every platform will
incorporate trained models to encode data-driven decisions that would be impossi-
ble for developers to author. This presents a significant engineering challenge, since
currently data science and modeling are largely decoupled from standard software
development processes. This separation makes incorporating machine learning
capabilities inside applications unnecessarily costly and difficult, and furthermore
discourage developers from embracing ML in first place.
In this paper we introduce ML.NET, a framework developed at Microsoft over
the last decade in response to the challenge of making it easy to ship machine
learning models in large software applications. We present its main abstractions
and design choices. Specifically, we introduce DataView, the core data abstraction
of ML.NET which allows it to capture full predictive pipelines efficiently and
consistently across training and inference lifecycles.

1 Introduction

We are witnessing an explosion of new frameworks for building Machine Learning (ML) mod-
els [16, 19, 7, 32, 14, 11, 21, 31, 10, 17, 1]. This profusion is motivated by the transition from
machine learning as an art and science into a set of technologies readily available to every devel-
oper. An outcome of this transition is the abundance of applications that rely on trained models for
functionalities that evade traditional programming due to their complex statistical nature. Speech
recognition and image classification are only the most prominent such cases. This unfolding future,
where most applications make use of at least one model, profoundly differs from the current practice
in which data science and software engineering are performed in separate and different processes and
sometimes even organizations. Furthermore, in current practice, models are routinely deployed and
managed in completely distinct ways from other software artifacts. While typical software packages
are seamlessly compiled and run on a myriad of heterogeneous devices, machine learning models
are often relegated to be run as web services in relatively inefficient containers [6, 22, 2, 30, 12].
This pattern not only severely limits the kinds of applications one can build with machine learning
capabilities, but also discourages developers from embracing ML as a core component of applications.

At Microsoft we have encountered this phenomenon across a wide spectrum of applications and
devices, ranging from services and server software to mobile and desktop applications running on
PCs, Servers, Data Centers, Phones, Game Consoles and IOT devices. A machine learning toolkit
for such diverse use cases, frequently deeply embedded in applications, must satisfy additional
constraints compared to the recent cohort of toolkits. For example, it has to limit library dependencies
that are uncommon for applications; it must cope with datasets too large to fit in RAM; it has to be



portable across many target platforms; it has to be model class agnostic, as different ML problems
lend themselves to different model classes; and, most importantly, it has to capture the full prediction
pipeline that takes a test example from a given domain (e.g., an email with headers and body) and
produces a prediction that can often be structured and domain-specific (e.g., a collection of likely
short responses). The requirement to encapsulate predictive pipelines is of paramount importance
because it allows for effectively decoupling application logic from model development. Carrying
the complete train-time pipeline into production provides a dependable way for building efficient,
reproducible, production-ready models [36].

The need for ML pipelines has been recognized previously. Python libraries such as Scikit-learn [31]
provide the ability to author complex machine learning cascades. Python has become the most
popular language for data science thanks to its simplicity, interactive nature (e.g., notebooks [8, 18])
and breadth of libraries (e.g., numpy [34], pandas [28], matplotlib [9]). However, Python-based
libraries inherit many syntactic idiosyncrasies and language constraints (e.g., interpreted execution,
dynamic typing, global interpreter locks that restrict parallelization), making them suboptimal for
high-performance applications targeting a myriad of devices.

In this paper we introduce ML.NET: a machine learning framework allowing developers to author
and deploy in their applications complex ML pipelines composed of data featurizers and state of the
art machine learning models. Pipelines implemented and trained using ML.NET can be seamlessly
surfaced for prediction without any modification: training and prediction, in fact, share the same
code paths, and adding a model into an application is as easy as importing ML.NET runtime and
binding the inputs/output data sources. ML.NET’s ability to capture full, end-to-end pipelines has
been demonstrated by the fact that 1,000s of Microsoft’s data scientists and developers have been
using ML.NET over the past decade, infusing 100s of products and services with machine learning
models used by hundreds of millions of users worldwide.

ML.NET supports large scale machine learning thanks to an internal design borrowing ideas from
relational database management systems and embodied in its main abstraction: DataView. DataView
provides compositional processing of schematized data while being able to gracefully and efficiently
handle high dimensional data in datasets larger than main memory. Like views in relational databases,
a DataView is the result of computations over one or more base tables or views, and is generally
immutable and lazily evaluated (unless forced to be materialized, e.g., when multiple passes over the
data are requested). Under the hood, DataView provides streaming access to data so that working
sets can exceed main memory. Next we will give an overview of ML.NET main concepts using a
simple pipeline.

2 ML.NET: Overview

ML.NET is a .NET machine learning library that allows developers to build complex machine
learning pipelines, evaluate them, and then utilize them directly for prediction. Pipelines are often
composed of multiple transformation steps that featurize and transform the raw input data, followed
by one or more ML models that can be stacked or form ensembles. We next illustrate how these tasks
can be accomplished in ML.NET on a short but realistic example. Furthermore, we will exploit this
example to introduce the main concepts in ML.NET.

1 var loader = new TextLoader().From<SentimentData>();
2 var featurizer= new TextFeaturizer("Features","Text")
3 var learner = new FastTreeBinaryClassifier()
4 {
5 // Some parameter
6 };
7
8 var pipeline = new LearningPipeline()
9 .Add(loader)

10 .Add(featurizer)
11 .Add(learner);

Figure 1: A text analysis pipeline whereby sentences are classified according to their sentiment.

Figure 1 introduces a Sentiment Analysis pipeline (SA). The first item required for building a pipeline
is a Loader (line 1) which specifies the raw data input parameters and its schema. In the example
pipeline, the input schema (SentimentData) is specified explicitly with a call to From, but in
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other situations (e.g., CSV files with headers) schemas can be automatically inferred by the loader.
Loaders generate a DataView object, which is the core data abstraction of ML.NET. DataView
provides a fully schematized non-materialized view of the data, and gets subsequently transformed by
pipeline components. The second step is feature extraction from the input Text column (line 2). To
achieve this, we use the TextFeaturizer transform. Transforms are the main ML.NET operators
for manipulating data. Transforms accept a DataView as input and produce another DataView.
TextFeaturizer is actually a complex transform built off a composition of nine base transforms
that perform common tasks for feature extraction from natural text. Specifically, the input text is
first normalized and tokenized. For each token, both char- and word-based ngrams are extracted
and translated into vectors of numerical values. These vectors are subsequently normalized and
concatenated to form the final Features column. Some of the above transforms (e.g., normalizer)
are trainable: i.e., before producing an output DataView they are required to scan the whole dataset
to determine internal parameters (e.g., scalers). Subsequently, in line 3 we apply a learner (i.e., a
trainable model)— in this case, a binary classifier called FastTree: an efficient implementation of
the MART gradient boosting algorithm [24]. Once the pipeline is assembled (line 8), we can train
it by calling the homonym method on the pipeline object with the expected output prediction type
(Figure 2). ML.NET evaluation is lazy: no computation is actually run until the train method (or
other methods triggering pipeline execution) is called. This allows ML.NET to (1) properly validate
that the pipeline is well-formed before computation; and (2) deliver state of the art performance by
devising efficient execution plans.

var model = pipeline.Train<SentimentPrediction>();

Figure 2: Training of the sentiment analysis pipeline. Up to here no execution is actually triggered.

Once a pipeline is trained, a model object containing all training information is created. The model
can be saved to a file (in this case, the information of all trained operators as well as the pipeline
structure are serialized into a compressed file), or evaluated against a test dataset (Figure 3) or directly
used for prediction serving (Figure 4). To evaluate model performance, ML.NET provides specific
components called evaluators. Evaluators accept a previously trained model as input alongside test
datasets and produce a set of metrics. In the specific case of the BinaryClassifierEvaluator
used in Figure 3, relevant metrics are those used for binary classifiers, such as accuracy, Area Under
the Curve (AUC), log-loss, etc.

var evaluator = new BinaryClassifierEvaluator();
var metrics = evaluator.Evaluate(model, testData);

Figure 3: Evaluating mode accuracy using a test dataset.

Finally, serving the model for prediction is achieved by calling the Predict method with a list
of SentimentData objects. Predictions can be served natively in any OS (e.g., Linux, Windows,
Android, macOS) or device (x86/x64 and ARM processors) supported by the .NET Core framework.

var predictions = model.Predict(PredictionData);

Figure 4: Serving predictions using the trained model.

3 Related Work

While several machine learning frameworks [29, 10, 17, 16, 19, 14, 7, 32, 11, 4] have been proposed in
the past years, Scikit-learn [31] and H20 probably remains the most related to ML.NET. Scikit-learn
has been developed as a machine learning tool for Python and, as such, it mainly targets interactive
uses cases running over datasets fitting in main memory. Given its characteristic, Scikit-learn has
several limitations when it comes to experimenting over Big Data: runtime performance are often
inadequate; large datasets and feature sets are not supported; datasets cannot be streamed but instead
they can only be accessed in batch from main memory. ML.NET solves the aforementioned problems
thanks to the DataView abstraction (Section 4.1) and several other techniques inspired by databases.

While ML.NET uses DataView, H2O employs H2O Data Frames as abstraction of data. Differently
than DataView however, H2O Data Frames are not immutable but “fluid”, i.e., columns can be added,
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updated and removed by modifying the base data frame. Fluid vectors are compressed so that larger
than RAM working sets can be used. H2O provides several interfaces (R, Python, Scala) and large
variety of algorithms. H2O is JVM-based and provides performance for large dataset mainly through
in-memory distributed computation (based on Apache Spark [35, 15]). Conversely, ML.NET main
focus is efficient single machine computation.

4 System Design Principles and Abstractions

ML.NET borrows ideas from the database community. ML.NET’s main abstraction is called
DataView (Section 4.1). Similarly to (intensional) database relations, the DataView abstraction
provides compositional processing of schematized data, but specializes it for machine learning
pipelines. The DataView abstraction is generic and supports both primitive operators as well as the
composition of multiple operators to achieve higher-level semantics such as the TextFeaturizer
transform of Figure 1 (Section 4.2). Under the hood, operators implementing the DataView interface
are able to gracefully and efficiently handle high-dimensional and large datasets thanks to cursoring
(Section 4.3) which resembles the well-known iterator model of databases [25].

4.1 The DataView Abstraction

In relational databases, the term view typically indicates the result of a query on one or more
tables (base relations) or views, and is generally immutable. Views (and tables) are defined over
a schema which expresses a sequence of columns names with related types. The semantics of the
schema is such that each data row outputs of a view must conform to its schema. Views have
interesting properties which differentiate them from tables and make them appropriate abstractions
for machine learning: (1) views are composable—new views are formed by applying transformations
(queries) over other views; (2) views are virtual, i.e., they can be lazily computed on demand
from other views or tables without having to materialize any partial results; and (3) since a view
does not contain values, but merely computes values from its source views, it is immutable and
deterministic: the same exact computation applied over the same input data always produces the same
result. Immutability and deterministic computation enable transparent data caching (for speeding up
iterative computations such as ML algorithms) and safe parallel execution. DataView inherits the
aforementioned database view properties, namely: schematization, composability, lazy evaluation,
immutability, and deterministic execution.

Schema with Hidden Columns. Each DataView carries schema information specifying the name
and type of each view’s column. DataView schemas are ordered and, by design, multiple columns
can share the same name, in which case, one of the columns hides the others: referencing a column by
name always maps to the latest column with that name. Hidden columns exist because of immutability
and can be used for debugging purposes: having all partial computations stored as hidden columns
allows the inspection of the provenance of each data transformation. Indeed, hidden columns are
never fully materialized in memory (unless explicitly required by the algorithm or user) therefore
their resource cost is minimal.

High Dimensional Data Support with Vector Types. Machine learning and advanced analytics
applications often involve high-dimensional data. For example, common techniques for learning from
text uses bag-of-words (e.g., TextFeaturizer), one-hot encoding or hashing variations to represent
non-numerical data. These techniques typically generate an enormous number of features (e.g.,
with hashing, it is common to use 20 bits or more, producing 220 features or more). Representing
each feature as an individual column is far from ideal, both from the perspective of how the user
interacts with the information and how the information is managed in the schematized system. The
DataView solution is to represent each set of features as a single vector column. This technique is
similar to the column families concept in NoSQL systems such as BigTable [20] or Cassandra [5]. A
vector type specifies an item type and optional dimensionality information. The item type must be a
primitive, non-vector, type. The optional dimensionality information specifies the number of items
in the corresponding vector values. When the size is unspecified, the vector type is variable-length.
For example, the TextTokenizer transform (contained in TextFeaturizer) maps a text value to
the sequence of individual terms in that text. This transformation naturally produces variable-length
vectors of text. Conversely, fixed-size vector columns are used, for example, to represent a range of
column from an input dataset.
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4.2 Composing Computations using DataView

ML.NET includes several standard operators and the ability to compose them using the DataView
abstraction to produce efficient machine learning pipelines. Transform is the main operator class:
transforms are applied to a DataView to produce a derived DataView and are used to prepare data
for training, testing, or prediction serving. Learners are machine learning algorithms that are trained
on data (eventually coming from some transform) and produce predictive models. Evaluators take
scored test datasets and produced metrics such as precision, recall, F1, AUC, etc. Finally, Loaders
are used to represent data sources as a DataView, while Savers serialize DataViews to a form that
can be read by a loader. We now details some of the above concepts.

Transforms. Transforms take a DataView as input and produce a DataView as output. Many
transforms simply “add” one or more computed columns to their input schema. More precisely,
their output schema includes all the columns of the input schema, plus some additional columns,
whose values are computed starting from some of the input columns. It is common for an added
column to have the same name as an input column, in which case, the added column hides the input
column, as we have previously described. Multiple primitive transforms may be applied to achieve
higher-level semantics: for example, the TextFeaturizer transform of Figure 1 is the composition
of 9 primitive transforms.

Trainable Transforms. While many transforms simply map input data values to output by applying
some pre-defined computation logic (e.g., Concat), other transforms require “training", i.e., their pre-
cise behavior is determined automatically from the input training data. For example, normalizers and
dictionary-based mappers translating input values into numerical values (used in TextFeaturizer)
build their state from training data. Given a pipeline, a call to Train triggers the execution of all
trainable transforms ( as well as learners) in topological order. When a transform (learner) is trained,
it produces a DataView representing the computation up to that point in the pipeline: the DataView
can then be used by downstream operators. Once trained and later saved, the state of a trained
transform is serialized such that, once loaded back the transform is not retrained.

Learners. Alike trainable transforms, learners are machine learning algorithms that take DataView
as input and produce “models": transforms that can be applied over input DataViews and output pre-
dictions. ML.NET supports learners for binary classification, regression, multi-class classification,
ranking, clustering, anomaly detection, recommendation and sequence prediction tasks.

4.3 Cursoring over Data

ML.NET uses DataView as a representation of a computation over data. Access to the actual data is
provided through the concept of row cursor. While in databases queries are compiled into a chain
of operators, each of them implementing an iterator-based interface, in ML.NET, ML pipelines are
compiled into chains of DataViews where data is accessed through cursoring. A row cursor is a
movable window over a sequence of data rows coming either from the input dataset or from the result
of the computation represented by another DataView. The row cursor provides the column values for
the current row, and, as iterators, can only be advanced forward (no backtracking is allowed).

Columnar Computation. In data processing systems, it is common for a down-stream operator
to only require a small subset of the information produced by the upstream pipeline. For example,
databases have columnar storage layouts to avoid access to unnecessary columns [33]. This is even
more so in machine learning pipelines where featurizers and ML models often work on one column
at a time. For instance, TextFeaturizer needs to build a dictionary of all terms used in a text
column, while it does not need to iterate over any other columns. ML.NET provides columnar-style
computation model through the notion of active columns in row cursors. Active columns are set
when a cursor is initialized: the cursor then enforces the contract that only the computation or data
movement necessary to provide the values for the active columns are performed.

Pull-base Model, Streaming Data. ML.NET runtime performance are proportional to data move-
ments and computations required to scan the data rows. As iterators in database, cursors are pull-based:
after an initial setup phase (where for example active columns are specified) cursors do not access
any data, unless explicitly asked to. This strategy allows ML.NET to perform at each time only the
computation and data movements needed to materialize the requested rows (and column values within
a row). For large data scenarios, this is of paramount importance because it allows efficient streaming
of data directly from disk, without having to rely on the assumption that working sets fit into main
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Figure 5: Experimental results for the Criteo dataset.

memory. Indeed, when the data is known to fit in memory, caching provides better performance for
iterative computations.

5 System Implementation and Experiments

ML.NET is the solution Microsoft developed for the problem of empowering developers with a
machine learning framework to author, test and deploy ML pipelines. ML.NET is implemented with
the goal of providing a tool that is easy to use, scalable over large datasets while providing good
performance, and able to unify under a single API data transformations, featurizers, and state of
the art machine learning models. In its current implementation, ML.NET comprises 2773K lines
of C# code, and about 74K lines of C++ code, the latter used mostly for high-performance linear
algebra operations employing SIMD instructions. ML.NET supports more then 80 featurizers and
40 machine learning models. ML.NET is extensible [27, 13] and allows users to import pre-trained
TensorFlow and ONNX [3] models.

We tested ML.NET over the Criteo dataset [23] and we report here a comparison against Scikit-learn
and H2O. The reported experiments are carried out on a standard data science virtual machine
on Azure with 56GB of RAM, 112 GB of Local SSD and a single Intel(R) Xeon(R) @ 2.40GHz
processor. We used Scikit-learn version 0.19.1 and H2O version 3.20.0.7. For the three systems we
build a pipeline which (1) fills in the missing values in the numerical columns of the dataset; (2)
encodes a categorical columns into a numeric matrix using a hash function; and (3) applies a Gradient
Boosting Classifier (LightGBM [26] for ML.NET). Figure 5a shows the total runtime (including
training and testing), while Figure 5b depicts the AUC on the test dataset. As we can see, ML.NET
has the best performance. H2O shows good runtime performance, especially for smaller datasets. In
this experiment Scikit-learn has the worst running time: with the full training dataset, ML.NET trains
in around 10 minutes while Scikit-learn takes more than 2 days. Regarding the accuracy, we can
notice that the results from ML.NET dominate Scikit-learn/H2O by a large margin. This is mainly
due to the superiority of LightGBM versus the Gradient Boosting algorithm used in the latters.

6 Conclusions

Machine learning is rapidly transitioning from a niche field to a core element of modern application
development. This raises a number of challenges Microsoft faced early on. ML.NET addresses a core
set of them: it brings machine learning onto the same technology stack as application development,
delivers the scalability needed to work on datasets large and small across a myriad of devices and
environments, and, most importantly, allows for complete pipelines to be authored and shared in
an efficient manner. These attributes of ML.NET are not an accident: they have been developed
in response to requests and insights from thousands of data scientists at Microsoft who used it
to create hundreds of services and products used by hundreds of millions of people worldwide
every day. ML.NET is open source and publicly available at https://github.com/dotnet/
machinelearning.
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