
Learning kernels that adapt to GPU

Siyuan Ma and Mikhail Belkin
Department of Computer Science and Engineering

The Ohio State University
{masi, mbelkin}@cse.ohio-state.edu

Abstract

In this work we develop a framework for kernel machines that are efficient, accurate
and are adaptive to modern parallel hardware, such as GPU. Our main innovation
is in constructing kernel machines that output solutions mathematically equivalent
to those obtained using standard kernels, yet capable of fully utilizing the available
computing power of a parallel computational resource. Such utilization is key to
strong performance as much of the computational resource capability is wasted by
the standard iterative methods.
Our approach is based on the idea of interpolation, using the significant empirical
evidence that methods achieving near-zero training error show excellent test re-
sults. In this work we show how the mathematical and conceptual simplicity of
optimization in the interpolation regime can be harnessed to design kernels and
automatically choose parameters adaptive to computational resources.
The resulting algorithm, which we call EigenPro 2.0, is accurate, principled and
very fast. For example, using a single Titan XP GPU, training on ImageNet with
1.3× 106 data points and 1000 labels takes under an hour, while smaller datasets,
such as MNIST, take seconds. As the parameters are chosen analytically, based
on the theoretical bounds, little tuning beyond selecting the kernel and kernel
parameter is needed, further facilitating the practical use of these methods. See
arxiv.org/abs/1806.06144 for the full version of this paper.

1 Introduction
Kernel machines are a powerful class of methods for classification and regression. Given the training
data {(xxxi, yi), i = 1, . . . , n} ∈ Rd × R, and a positive definite kernel k : Rd × Rd → R, kernel
machines construct functions of the form f(xxx) =

∑
i αik(xxx,xxxi). These methods are theoretically

attractive, show excellent performance on smaller datasets, and are known to be universal learn-
ers, i.e., capable of approximating any function from data. However, making kernel machines fast
and scalable to large data has been a challenging problem. Recent large scale efforts typically
involved significant parallel computational resources, such as multiple (sometimes thousands) AWS
vCPU’s [TRVR16, ACW16] or super-computer nodes [HAS+14]. Very recently, FALKON [RCR17]
and EigenPro [MB17] showed strong classification results on large datasets with much lower compu-
tational requirements, a few hours on a single GPU.

The goal of this paper is to go beyond those algorithms by designing kernel machines that can be
trained very quickly on both small and large data, easily scale to millions of data points using standard
modern hardware, and consistently show excellent classification performance. We aim to make nearly
all aspects of parameter selection automatic, making these methods easy and convenient to use in
practice and appropriate for “interactive" exploratory machine learning.

The main problem and our contribution. The main problem addressed in this paper is to minimize
the training time for a kernel machine, given access to a parallel computational resource G . Our
main contribution is that given a standard kernel, we are able to learn a new data and computational
resource dependent kernel to minimize the resource time required for training without changing the

Preprint. Work in progress.

https://arxiv.org/abs/1806.06144


mathematical solution for the original kernel. Our model for a computational resource G is based
on a modern graphics processing unit (GPU), a device that allows for very efficient, highly parallel1
matrix multiplication.

The outline of our approach is shown in the diagram on the right. We now outline the key ingredients.

The interpolation framework. In recent years we have seen that inference
methods, notably neural networks, that interpolate or nearly interpolate the
training data generalize very well to test data [ZBH+16]. It has been observed
in [BMM18] that minimum norm kernel interpolants, i.e., functions of the
forms f(xxx) =

∑
i αik(xxx,xxxi), such that f(xxxi) = yi, achieve optimal or near

optimal generalization performance. While the mathematical foundations of
why interpolation produces good test results are not yet fully understood, the
simplicity of the framework can be used to accelerate and scale the training
of classical kernel methods, while improving their test accuracy. Indeed,
constructing these interpolating functions is conceptually and mathematically
simple, requiring approximately solving a single system of linear equations
with a unique solution, same for both regression and classification. Signif-
icant computational savings and, when necessary, regularization [YRC07]
are provided by early stopping, i.e., stopping iterations before numerical
convergence, once successive iterations fail to improve validation error.

Adaptivity to data and computational resource: choosing optimal batch
size and step size for SGD. We will train kernel methods using Stochastic
Gradient Descent (SGD), a method which is well-suited to modern GPU’s
and has shown impressive success in training neural networks. Importantly,
in the interpolation framework, dependence of convergence on the batch size and the step size can be
derived analytically, allowing for full analysis and automatic parameter selection.

We first note that in the parallel model each iteration of SGD (essentially a matrix multiplication)
takes the same time for any mini-batch size up to mmax

G , defined as the mini-batch size where the
parallel capacity of the resource G is fully utilized. It is shown in [MBB17] that in the interpolation
framework convergence per iteration (using optimal step size) improves nearly linearly as a function
of the mini-batch size m up to a certain critical size m∗(k) and rapidly saturates after that. The
quantity m∗(k) is related to the spectrum of the kernel. For kernels used in practice it is typically
quite small, less than 10, due to their rapid eigenvalue decay. Yet, depending on the number of data
points, features and labels, a modern GPU can handle mini-batches of size 1000 or larger. This
disparity presents an opportunity for major improvements in the efficiency of kernel methods. In this
paper we show how to construct data and resource adaptive kernel kG , by modifying the spectrum of
the kernel by using EigenPro algorithm [MB17]. The resulting iterative method with the new kernel
has similar or better convergence per iteration than the original kernel k for small mini-batch size.
However its convergence improves linearly to much larger mini-batch sizes, matching mmax

G , the
maximum that can be utilized by the resource G . Importantly, SGD for either kernel converge to the
same interpolated solution.

Figure 1: Adaptive/original kernel

Thus, we aim to modify the kernel by constructing a kernel
kG , such that m∗(kG) = mmax

G without changing the optimal
(interpolating) solution. This is shown schematically in Figure 1.
We see that for small mini-batch size convergence of these two
kernels k and kG is similar. However, values of m > m∗(k)
do not help the convergence of the original kernel k, while
convergence of kG keep improving up to m = mmax

G , where the
resource utilization is saturated. For empirical results on real
datasets, parallel to the schematic shown above, see Figure 2 in
Section 4.

We construct and implement these kernels (see github.com/EigenPro/EigenPro2 for the code), and
show how to analytically choose parameters, including the batch size and the step size. As a secondary
contribution of this work we develop an improved version of EigenPro [MB17] significantly reducing
the memory requirements and making the computational overhead over the standard SGD negligible.

1For example, there are 3840 CUDA cores in Nvidia GTX Titan Xp (Pascal).

2

https://github.com/EigenPro/EigenPro2


Comparison to related work. In recent years there has been significant progress on scaling and ac-
celerating kernel methods including [TBRS13, HAS+14, LML+14, TRVR16, ACW16, MGL+17].
Most of these methods are able to scale to large data sets by utilizing major computational re-
sources such as supercomputers or multiple (sometimes hundreds or thousands) AWS vCPU’s. Two
recent methods which allow for high efficiency kernel training with a single CPU or GPU is Eigen-
Pro [MB17] (used a as basis for the adaptive kernels in this paper) and FALKON [RCR17]. The
method developed in this paper is significantly faster than either of them, while achieving similar or
better test set accuracy. Additionally, it is easier to use as much of the parameter selection is done
automatically. Mini-batch SGD (used in our algorithm) has been the dominant technique in training
deep models. There has been significant empirical evidence [Kri14, YGG17, SKL17] showing that
linearly scaling the step size with the mini-batch size up to a certain value leads to improved conver-
gence. This phenomenon has been utilized to scale deep learning in distributed systems by adopting
large mini-batch sizes [GDG+17]. The advantage of our setting is that the optimal batch and step
sizes can be analyzed and expressed analytically. Moreover, these formulas contain variables which
can be explicitly computed and directly used for parameter selection in our algorithms. Going beyond
batch size and step size selection, the theoretical interpolation framework allows us to construct new
adaptive kernels, such that the mini-batch size required for optimal convergence matches the capacity
of the computational resource.

The paper is structured as follows: In Section 3, we present our main algorithm to learn a kernel to
fully utilize a given computational resource. We then provide comparisons to state-of-the-art kernel
methods on several large datasets in Section 4. We further discuss exploratory machine learning in
the context of our method.

2 Setup
We start by briefly discussing the basic setting and kernel methods used in this paper.

Kernel interpolation. We are given n labeled training points (xxx1, y1), . . . , (xxxn, yn) ∈ Rd × R. We
consider a Reproducing Kernel Hilbert Space (RKHS) H [Aro50] corresponding to a positive definite
kernel function k : Rd × Rd → R. There is a unique (minimum norm) interpolated solution in Hof
the form f∗(·) =

∑n
i=1 α

∗
i k(xxxi, ·), where (α∗1, . . . , α

∗
n)
T = K−1(y1, . . . , yn)

T . Here K denotes
an n× n kernel matrix, Kij = k(xxxi,xxxj). It is easy to check that ∀if∗(xi) = yi.

Square loss. While the interpolated solution f∗ in H does not depend on any loss function, it is the
unique minimizer in H for the empirical square loss L(f) , 1

n

∑n
i=1(f(xxxi)− yi)2.

Gradient descent. It can be shown that gradient descent iteration for the empirical squared loss in
RKHS H is given by f ← f − η · 2n

∑n
i=1(f(xxxi)− yi)k(xxxi, ·).

Mini-batch SGD. Instead of calculating the gradient with n training points, each SGD iter-
ation updates the solution f using m subsamples (xxxt1 , yt1), . . . , (xxxtm , ytm), f ← f − η ·
2
m {
∑m
i=1(f(xxxti)− yti)k(xxxti , ·)}. It is equivalent to randomized coordinate descent [LL10] for

Kααα = yyy on m coordinates of ααα, αti ← αti − η · 2
m {f(xxxti)− yti} for i = 1, . . . ,m.

Critical mini-batch size as effective parallelism. Theorem 4 in [MBB17] shows that for mini-batch
iteration with kernel k there is a data-dependent batch size m∗(k) such that (a) Convergence per
iteration improves linearly with increasing batch sizem for m ≤ m∗(k) (using optimal constant step
size); (b) Training with any batch size m > m∗(k) leads to the same convergence per iteration as
training with m∗(k) up to a small constant factor. We can calculate m∗(k) explicitly using kernel
matrix K (depending on the data), m∗(k) = β(K)

λ1(K) where β(K) , maxi=1,...,n k(xxxi,xxxi). For any
shift invariant kernel k, after normalization, we have β(K) = maxni=1 k(xxxi,xxxi) ≡ 1.

EigenPro iteration [MB17]. To achieve faster convergence, EigenPro iteration performs spectral
modification on the kernel operator K(f) , 2

n

∑n
i=1〈k(xxxi, ·), f〉Hk(xxxi, ·) using operator, P(f) ,

f −
∑q
i=1(1 −

λq

λi
)〈ei, f〉Hei where λ1 ≥ · · · ≥ λn are ordered eigenvalues of K and ei is its

eigenfunction corresponding to λi. The iteration uses P to rescale a (stochastic) gradient in H,
f ← f − η ·P

{
2
m

∑m
i=1(f(xxxti)− yti)k(xxxti , ·)

}
.

Abstraction for parallel computational resources. To construct a resource adaptive kernel, we
consider the following abstraction for given computational resource G . CCCG : Parallel capacity of G ,
i.e., the number of parallel operations that is required to fully utilize the computing capacity of G . SSSG :

3



Internal resource memory of G . To fully utilize G , one SGD/EigenPro iteration must execute at least
CG operations using less than SG memory. In this paper, we primarily adapt kernel to GPU devices.
For a GPU G , SG equals the size of its dedicated memory and CG is proportional to the number of the
computing cores (e.g., 3840 CUDA cores in Titan Xp). Note for computational resources like cluster
and supercomputer, we need to take into account additional factors such as network bandwidth.

3 Main Algorithm

EigenPro 2.0

Our main algorithm aims to reduce the training time by constructing a data/re-
source adaptive kernel for any given kernel function k to fully utilize a
computational resource G . Its detailed workflow is presented on the right.
Specifically, we use the following steps. Step 1: Calculate the resource-
dependent mini-batch size mmax

G to fully utilize resource G . Step 2: Identify
the parameters and construct a new kernel kG such that m∗(kG) = mmax

G .
Step 3: Select optimal step size and train using improved EigenPro (see the
full paper). Note that due to properties of EigenPro iteration, training with
this adaptive kernel converges to the same solution as the original kernel.

To calculate mmax
G for 100% resource utilization, we first estimate the oper-

ation parallelism and memory usage of one EigenPro iteration. The improved
version of EigenPro iteration (see the full paper) makes computation and
memory overhead over the standard SGD negligible. Thus we assume that
EigenPro has the same complexity as the standard SGD per iteration.

Cost of one EigenPro iteration with batch size m. We consider training
data (xxxi, yyyi) ∈ Rd × Rl, i = 1, . . . , n. Here each feature vector xxx is d
dimensional, and each label yyy is l dimensional. Computational cost: It
takes (d + l) ·m · n operations to perform one SGD iteration on m points.
These computations reduce to matrix multiplication and can be done in
parallel. Space usage: It takes d · n memory to store the training data (as
kernel centers) and l · n memory to maintain the model weight. We can now
calculate mmax

G for the parallel computational resource G with parameters
CG , SG and introduced in Section 2.

Step 1: Determining batch size mmax
G for 100% resource utilization. We

first define two mini-batch notations. mmmCG : batch size for fully utilizing
parallelism in G such that (d + l) · mCG · n ≈ CG . mmmSG : batch size for
maximum memory usage of G such that (d + l +mSG ) · n ≈ SG . To best
utilize G without exceeding its memory, we set mmax

G = min{mCG ,mSG}.
Note that in practice, it is more important to fully utilize the memory so that mmax

G . mSG .

Step 2: Learning the kernel kG given mmax
G . Next, we show how to construct kG = kPq using

EigenPro iteration such that m∗(kG) = mmax
G . The corresponding q is defined as q , max {i ∈

N, s.t. m∗(kPi) ≤ mmax
G }.

Step 3: Training with adaptive kernel kG = kPq
. We use the learned kernel kG with improved

EigenPro. Its optimization parameters (batch and step size) are calculated by m = mmax
G , η =

mmax
G

β(KG )

Claim (Acceleration). Using the adaptive kernel kG decreases the resource time required for training
(assuming an idealized model of the GPU and workload) over the original kernel k by a factor of
acceleration of kG over k = β(K)

β(KG )
· m

max
G

m∗(k) See the supplementary material for the derivation and a

discussion. We note that empirically, β(KG) ≈ β(K), while
mmax

G

m∗(k) is between 50 and 500, which is
in line with the acceleration observed in practice.

Improved EigenPro Iteration using Nyström Extension. we present an improvement for the
EigenPro iteration originally proposed in [MB17]. We significantly reduce the memory overhead
of EigenPro over standard SGD and nearly eliminate computational overhead per iteration. The
improvement is based on an efficient representation of the EigenPro preconditioner using Nyström
extension. See the full paper for the details of the algorithm.

4



4 Experimental Evaluation
See description for computing resource, datasets, and model in the full paper.

4.1 Comparison to state-of-the-art kernel methods

In the table below, we compare our method to the state-of-the-art kernel methods on several large
datasets. For all datasets, our method is significantly faster than other methods while still achieving
better or similar results. Moreover, our method uses only a single GPU while many state-of-the-art
kernel methods use much less accessible computing resources.

Dataset Size
EigenPro 2.0

(use 1 GTX Titan Xp) Results of Other Methods

error GPU time resource time error reference

MNIST 6.7× 106 0.72% 19 m

4.8 h on
1 GTX Titan X 0.70% EigenPro [MB17]

1.1 h on
1344 AWS vCPUs 0.72% PCG [ACW16]

less than 37.5 hours
on 1 Tesla K20m 0.85% [LML+14]

ImageNet† 1.3× 106 20.6% 40 m - 19.9% Inception-ResNet-v2 [SIVA17]
4 h on

1 Tesla K40c 20.7% FALKON [RCR17]

TIMIT‡ 1.1 · 106
/ 2 · 106

31.7%

32.1%

24 m
(3 epochs)

8 m
(1 epoch)

3.2 h on
1 GTX Titan X 31.7% EigenPro [MB17]

1.5 h on
1 Tesla K40c 32.3% FALKON [RCR17]

512 IBM
Blue Gene/Q cores 33.5% Ensemble [HAS+14]

7.5 h on
1024 AWS vCPUs 33.5% BCD [TRVR16]

multiple AWS
g2.2xlarge instances 32.4% DNN [MGL+17]

multiple AWS
g2.2xlarge instances 30.9% SparseKernel [MGL+17]

(use learned features)

SUSY 4 · 106 19.7% 58 s

6 m on
1 GTX Titan X 19.8% EigenPro [MB17]

4 m on
1 Tesla K40c 19.6% FALKON [RCR17]

36 m on
IBM POWER8 ≈ 20% Hierarchical [CAS16]

† Our method uses the convolutional features from Inception-ResNet-v2 and Falkon uses the convolutional
features from Inception-v4. Both neural network models are presented in [SIVA17] and show nearly identical
performance.
‡ There are two sampling rates for TIMIT, which result in two training sets of different sizes.

4.2 Convergence comparison to SGD and EigenPro

In Figure 2, we train three kernel machines with EigenPro 2.0, standard SGD and EigenPro [MB17]
for various batch sizes. The step sizes for SGD and EigenPro are tuned for best performance. The
step size for EigenPro 2.0 is computed automatically according to Section 3.

(a) MNIST (105 subsamples), stop
when target train mse < 1 · 10−4

(b) TIMIT (105 subsamples), stop
when target train mse < 2 · 10−4

Figure 2: Time to converge with optimal step sizes

Consistent with the schematic
Figure 1 in the introduction, the
original kernel k has a critical
batch size m∗(k) of size 4 and
6 respectively, which is too small
to fully utilize the parallel com-
puting capacity of the GPU de-
vice. In contrast, the EigenPro
2.0 kernel kG has a much larger
critical batch size m∗(kG) ≈
6500, which leads to maximum
GPU utilization. We see that
EigenPro 2.0 significantly outperforms original EigenPro due to better resource utilization and
parameter selection, as well as lower overhead (see detailed comparison in the full paper).

5



4.3 Batch size and GPU utilization

(a) Time per training iteration us-
ing different batch sizes on actual
and ideal devices (TIMIT, n = 105,
d = 440 )

(b) Time per training epoch on GPU
with different sizes of train set (n,
which is also the model size) and
batch that fit into the GPU memory

Figure 3: Time per iteration / epoch of training using different
batch sizes

The number of operation re-
quired for one iteration of SGD
is linear in the batch size. Thus
we expect that time required per
iteration for a pure sequential ma-
chine would scale linearly with
batch size. On the other hand an
ideal parallel device with no over-
head requires the same amount
of time to process any mini-
batch. In Figure 3a, we show
how the training time per itera-
tion for actual GPU depends on
the batch size. We see that for
small batch sizes time per itera-
tion is nearly constant, like that of an ideal parallel device, and start to increase for larger batches.

Note that in addition to time per iteration we need to consider the overhead associated to each iteration.
Larger batch sizes incur less overhead per epoch. This phenomenon is known in the systems literature
as Amdahl’s law [Rod85]. In Figure 3b we show GPU time per epoch for different model (training
set) size (n). We see consistent speed-ups by increasing mini-batch size across model sizes up to
maximum GPU utilization.

4.4 “Interactive” training for exploratory machine learning

Dataset Size Dimension Our method
(GPU)

ThunderSVM
(GPU)

LibSVM
(CPU)

TIMIT 1 · 105 440 15 s 480 s 1.6 h
SVHN 7 · 104 1024 13 s 142 s 3.8 h
MNIST 6 · 104 784 6 s 31 s 9 m

CIFAR-10 5 · 104 1024 8 s 121 s 3.4 h

Table 1: Training time

Most practical tasks of machine
learning require multiple train-
ing runs for parameter and fea-
ture selection, evaluating appro-
priateness of data or features to a
given task, and various other ex-
ploratory purposes. While using
hours, days or even months of machine time may be necessary to improve on the state of the art in
large-scale certain problems, it is too time-consuming and expensive for most data analysis work.
Thus, it is very desirable to train classifiers in close to real time. One of the advantages of our
approach is the combination of its speed on small and medium datasets using standard hardware
together with the automatic optimization parameter selection. We demonstrate this on several smaller
datasets (104 ∼ 105 points) using a Titan Xp GPU (see Table 1). We see that in every case training
takes no more than 15 seconds, making multiple runs for parameter and feature selection easily
feasible. For comparison, we also provide timings for LibSVM, a popular and widely used kernel
library [CL11] and ThunderSVM [WSL+18], a fast GPU implementation for LibSVM. We show the
results for LibSVM and ThunderSVM using the same kernel with the same parameter. We stopped
iteration of our method when the accuracy on test exceeded that of LibSVM, which our method was
able to achieve on every dataset. While not intended as a comprehensive evaluation, the benefits
of our method for typical data analysis tasks are evident. Fast training along with the “worry-free”
optimization create an “interactive/responsive” environment for using kernel methods in machine
learning. Furthermore, the choice of kernel (e.g., Laplacian or Gaussian) and its single bandwidth
parameter is usually far simpler than the multiple parameters involved in the selection of architecture
in neural networks.

5 Conclusion and Future Directions
The main contribution of this paper is to develop kernel methods for machine learning capable of
minimizing the training time given access to a parallel computational resource. We have developed
practical algorithms that are very fast for smaller data and scale easily to several million data points
on a modern GPU. It is likely that more effective memory management together with the latest
generation of hardware would allow scaling up to 107 data points with reasonable training time.
Going beyond that to 108 or more data points using multi-GPU or other parallel computing setups is
the next natural step.

6



References
[ACW16] H. Avron, K. Clarkson, and D. Woodruff. Faster kernel ridge regression using sketching

and preconditioning. arXiv preprint arXiv:1611.03220, 2016.
[Aro50] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American

mathematical society, 68(3):337–404, 1950.
[BMM18] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need

to understand kernel learning. arXiv preprint arXiv:1802.01396, 2018.
[CAS16] Jie Chen, Haim Avron, and Vikas Sindhwani. Hierarchically compositional kernels for

scalable nonparametric learning. arXiv preprint arXiv:1608.00860, 2016.
[CL11] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.

ACM transactions on intelligent systems and technology (TIST), 2(3):27, 2011.
[GDG+17] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo

Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd:
Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[HAS+14] Po-Sen Huang, Haim Avron, Tara N Sainath, Vikas Sindhwani, and Bhuvana Ramabhad-
ran. Kernel methods match deep neural networks on timit. In ICASSP, pages 205–209.
IEEE, 2014.

[Kri14] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv
preprint arXiv:1404.5997, 2014.

[LL10] Dennis Leventhal and Adrian S Lewis. Randomized methods for linear constraints:
convergence rates and conditioning. Mathematics of Operations Research, 35(3):641–
654, 2010.

[LML+14] Zhiyun Lu, Avner May, Kuan Liu, Alireza Bagheri Garakani, Dong Guo, Aurélien
Bellet, Linxi Fan, Michael Collins, Brian Kingsbury, Michael Picheny, and Fei Sha.
How to scale up kernel methods to be as good as deep neural nets. arXiv preprint
arXiv:1411.4000, 2014.

[MB17] Siyuan Ma and Mikhail Belkin. Diving into the shallows: a computational perspective
on large-scale shallow learning. In Advances in Neural Information Processing Systems,
pages 3781–3790, 2017.

[MBB17] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Under-
standing the effectiveness of sgd in modern over-parametrized learning. arXiv preprint
arXiv:1712.06559, 2017.

[MGL+17] Avner May, Alireza Bagheri Garakani, Zhiyun Lu, Dong Guo, Kuan Liu, Aurélien Bellet,
Linxi Fan, Michael Collins, Daniel Hsu, Brian Kingsbury, et al. Kernel approximation
methods for speech recognition. arXiv preprint arXiv:1701.03577, 2017.

[RCR17] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large
scale kernel method. In Advances in Neural Information Processing Systems, pages
3891–3901, 2017.

[Rod85] David P Rodgers. Improvements in multiprocessor system design. In SIGARCH, 1985.
[SIVA17] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-

v4, inception-resnet and the impact of residual connections on learning. In AAAI,
volume 4, page 12, 2017.

[SKL17] Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[TBRS13] Martin Takác, Avleen Singh Bijral, Peter Richtárik, and Nati Srebro. Mini-batch primal
and dual methods for SVMs. In ICML (3), pages 1022–1030, 2013.

[TRVR16] S. Tu, R. Roelofs, S. Venkataraman, and B. Recht. Large scale kernel learning using
block coordinate descent. arXiv preprint arXiv:1602.05310, 2016.

[WSL+18] Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. Thundersvm: a fast
svm library on gpus and cpus. The Journal of Machine Learning Research (JMLR),
19(1):797–801, 2018.

[YGG17] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional
networks. arXiv preprint arXiv:1708.03888, 2017.

[YRC07] Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26(2):289–315, 2007.

7



[ZBH+16] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning
requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

8


	Introduction
	Setup
	Main Algorithm
	Experimental Evaluation
	Comparison to state-of-the-art kernel methods
	Convergence comparison to SGD and EigenPro
	Batch size and GPU utilization
	``Interactive'' training for exploratory machine learning

	Conclusion and Future Directions

