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Abstract

In this paper we experimentally analyze the convergence behavior of CoCoA and
show, that the number of workers required to achieve the highest convergence
rate at any point in time, changes over the course of the training. Based on this
observation, we build Chicle, an elastic framework that dynamically adjusts the
number of workers based on feedback from the training algorithm, in order to select
the number of workers that results in the highest convergence rate. In our evaluation
of 6 datasets, we show that Chicle is able to accelerate the time-to-accuracy by a
factor of up to 5.96× compared to the best static setting, while being robust enough
to find an optimal or near-optimal setting automatically in most cases.

1 Introduction

As data has become a major source of insight, machine learning (ML) has become a dominant
workload in many (public and private) cloud environments. Ever-increasing collection of data further
drives development of efficient algorithms and systems for distributed ML [8, 2] as resource demands
often exceed the capacity of single nodes. However, distributed execution, and the usage of cloud
resources, pose additional challenges in terms of efficient and flexible resource utilization. Recently,
several works have aim to improve resource utilization and flexibility of ML applications [3, 6, 11].

In this paper, we focus on Communication-efficient distributed dual Coordinate Ascent (CoCoA) [8],
a state-of-the-art framework for efficient, distributed training of generalized linear models (GLMs).
CoCoA significantly outperforms other distributed methods, such as mini-batch versions of stochastic
gradient descent (SGD) and stochastic dual coordinate ascent (SDCA) by minimizing the amount of
communication necessary between training steps.

Our work is motivated by two characteristics of the CoCoA algorithm. First, even assuming perfect
scalability and no overheads, increasing the number of workers K does not, in general, reduce the
time to reach a solution. This is because the convergence rate of CoCoA degrades as K increases [4].
Overall, CoCoA execution is split into epochs, and increasing K reduces the execution time of each
epoch, but also decreases the per epoch convergence rate, requiring more epochs to reach a solution.
Finding the K that minimizes execution time is not trivial and depends on the dataset.

Second, the number of workers K that minimize execution time changes as the algorithm progresses.
Figure 1a/1b shows the convergence rate with K = {1, 2, 4, 8, 16} workers, using the kdda and higgs
datasets as examples. We evaluate the convergence rate by plotting the duality-gap, which is given by
the distance between the primal and dual formulation of the training objective, and has been shown to
provide a robust certificate of convergence [1, 8]. Both examples show that for larger values of K,
the duality-gap converges faster initially, but slows down earlier than for smaller values of K, thus
resulting in smaller values for K leading to a shorter time-to-(high)-accuracy1 than large values for

1When we refer to the training accuracy we mean that a highly accurate solution to the optimization problem
has been found (i.e., a small value of the duality gap), rather than the classification accuracy of the resulting
classifier.
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K. However, this is not universally true, as Figure 1c shows for the rcv1 dataset, which scales almost
perfectly with K.

Based on these observations, we built Chicle, an elastic distributed machine learning framework, based
on CoCoA, that reduces time time-to-accuracy, robustly finds (near-)optimal settings automatically
and optimizes resource usage by exploiting the drifting of the optimal K.
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Figure 1: Example of the convergence of the duality-gap (a certificate for accuracy) for 3 datasets
using 1 to 16 workers, assuming perfect scaling and zero communication cost.

2 Background

CoCoA [8] is a distributed machine learning framework to train GLMs across K workers. The training
data matrix A is partitioned column-wise across all workers and processed by local optimizers that
independently apply updates to a shared vector v, which is synchronized periodically. In contrast to
the mini-batch approach, local optimizers apply intermediate updates directly to their local version of
the shared vector v, thus benefiting from previous updates within the same epoch.

Due to the immediate local updates to v by local optimizers, CoCoA outperforms previous state-
of-the-art mini-batch versions of SGD and SDCA. However, for the same reason, it is not trivial
to efficiently scale-out CoCoA, as increasing the number of workers does not guarantee a decrease
in time-to-accuracy, even assuming perfect linear scaling and zero communication costs between
epochs. The reason for this counter-intuitive behavior is that, as each local optimizer gets a smaller
partition of A, i.e. as it sees a smaller picture of the entire problem, the number of identifiable
correlations within each partition decreases as well, thus leaving more correlations to be identified
across partitions, which is slower due to infrequent synchronization steps.

Moreover, as indicated in the previous section, there is no K for which the convergence rate is
maximal at all times. This poses a challenge about the selection of the best K. It is up to the user to
decide in advance whether to train quickly to a low accuracy and wait longer to reach a high accuracy
or vice versa. A wrong decision can lead to longer training times and wasted resources as well as
money, as resources – at least in cloud offerings – are typically billed by the hour.

Ideally, the system would automatically and dynamically select K, such that the convergence rate is
maximal at any point in time, in order minimize training time and resource waste. As Figure 1b shows,
the convergence rate, i.e. the slope of the curve, starting from the same level of accuracy, differs
between different settings for K. E.g, as the curve for K = 16 flattens when reaching ≈ 1e − 5,
the curves for K ≤ 8 become relatively steeper until they too, one by one, flatten out. Hence, in
order to stay within a region of fast convergence for as long as possible, the system should switch
to a smaller K, once the curve for the current K starts to flatten. We assume that the convergence
rate, when switching from K to K ′ < K workers, at a certain level of accuracy, will follow a similar
trajectory, as if the training had reached said level of accuracy starting with K ′ workers in the first
place. However, the validity of this assumption is obvious, given that the learned models in both
cases are not guaranteed to be indentical.

Apart from the algorithmic side, adjusting K also poses very practical challenges on the system side.
Every change in K incurs a transfer of potentially several gigabytes of training data between nodes –
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a task that overwhelms many systems [10, 9, 7] as data (de-)serialization and transfer can be very
time consuming2. It is therefore crucial that the the overhead, introduced by the adjustment of K, is
small, such that a net benefit can be realized.

3 Chicle

Chicle3 is a distributed, auto-elastic machine learning system based on the state-of-the-art CoCoA
[8] framework that enables efficient ML training with minimized time-to-accuracy and optimized
resource usage. The core concept of Chicle is to reduce the number of workers (and therefore training
data partitions), starting from a set maximum number, dynamically, based on feedback from the
training algorithm. This is rooted in the observation of a knee in the convergence rate, after which the
convergence slows down significantly, and that this knee typically occurs at a lower duality-gap for
fewer workers compared to more workers. This can be observed in Figure 1b. Here, the knee occurs
at ≈ 1e− 5 for 16 workers and ≈ 1e− 6 for 2 workers. The reasoning for adjusting the number of
workers is the assumption that CoCoA can be accelerated, if, by reducing the number of workers, it
can stay before the knee for as long as possible.

3.1 Overview

Chicle implements a master/slave design in which a central driver (master) coordinates one or more
workers (slaves), each running on a separate node. Driver and worker communicate via a custom
remote procedure call (RPC) framework based on remote direct memory access (RDMA) to enable
fast data transfer with minimal overhead. Chicle is implemented in ≈ 3,000 lines of C++ code,
including the RDMA-based RPC subsystem.

The driver is responsible for loading, partitioning and distribution the training data, hence no shared
file system is required to store the training data. It partitions the data into P ≥ K partitions for K
workers, such that each worker is assigned P

K partitions with P being the least common multiple of
K and all potential scale-in sizes K ′ < K. Moreover, the central CoCoA component is implemented
as driver module. The workers implement an SDCA optimizer. Each optimizer instance works on
all partitions assigned to a worker, such that it can train with a bigger picture once partitions get
reassigned to a smaller set of workers. For each epoch, workers compute the partial primal and dual
objective for their assigned partitions, which are sent to the driver where the duality-gap is computed
and passed to the scale-in policy module.

3.2 Scale-in

Chicle enables efficient adjustment of the number of workers K (and the corresponding number of
data partitions per worker process) using a decision policy and a RDMA-based data copy mechanism.
In the context of this paper, Chicle only scales-in, i.e. reduces the number of workers K and therefore
redistributs the number of partitions P across fewer workers.

Scale-in policy. Our scale-in policy attempts to determine the earliest point in time when it is
beneficial to reduce the number of workers K (i.e. the beginning of the knee) while, at the same
time, being robust against occasional outlier (i.e. exceptionally long) epochs. To that end, we use
the slope of the duality-gap over time to identify the knee. It computes two slopes (see Figure 2) – a
long-term slope Sl which considers the convergence of the duality-gap since the last scale-in event –
and a short-term slope Ss, which considers only the last N epochs. As soon as Ss× d < Sl the policy
directs the driver process to initiate the scale-in mechanism. Larger values for N and d generally lead
to a more robust decision w.r.t. occasional outlier epochs, however they also increase the decision
latency, thus potentially failing to maximize benefits from an earlier scale-in. Empirically, we have
determined that N = 2 and d = 1.25 works well across all evaluated datasets. Our policy does not
determine the optimal factor m of the scale-in, i.e. K → K/m. We use a fixed m of 4, as test have
shown that the convergence rate difference for smaller m is often very small.

2Initially, we attempted to implement the concept of Chicle in Spark. This, however, failed to a large degree
due to very time-consuming (de-)serialization of the training data.

3Chicle is the Mexican-Spanish word for latex from the sapodilla tree that is used as basis for chewing gum.
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Figure 2: Schematic of the long-/short-term slope of the duality-gap that we use to identify the knee.

Scale-in mechanism. We implement a simple, RDMA-based foreground data-copy mechanism to
copy data from to-be-removed workers to remaining workers. As the data transfer occurs in parallel,
between multiple pairs of workers, we are able to exceed the maximal single-link bandwidth. For a
scale-in from K to K/m workers and a single-link bandwidth of r (e.g. 10 Gb/s), we can achieve a
total transfer rate of m× r, e.g. 40 Gb/s to scale-in from 16 to 4 workers on a 10 Gb/s network.

3.3 Data partitioning and in-memory representation

While we do not employ a sophisticated data partitioning scheme – we simply split the data into
equally sized chunks as it is laid out in the input file – we use an in-memory layout optimized for
efficient local access as well as efficient data transfer between workers (see Listing 1). In Chicle, data
for each partition is stored consecutively in the Partition::data array, which eliminates the need
for costly serialization. On the receiving side, a simple deserialization step is required to restore the
Example::dp pointer into the Partition::data array for each Example. This data layout, combined
with the usage of RDMA, enables us to transfer data at a rate close to the hardware limit.
1 struct Datapoint { uint32_t feature; float value; };
2 struct Example { size_t size; float label; Datapoint *dp; };
3 struct Partition {
4 Example *examples; // pointer to examples array in ’data’
5 Datapoint *datapoints; // pointer to datapoints array in ’data’
6 double *model; // pointer to model vector insize ’data’
7 size_t numExamples; // number of examples
8 char *data; // contains all data (examples , datapoints , model)
9 size_t size; // total size of memory allocated for ’data’

10 };

Listing 1: In-memory data structures of Chicle

While we have considered an anticipatory background transfer mechanism, our evaluations (see
Table 3) show that the overhead, introduced by our mechanism, does not necessitate this.

4 Evaluation

In our evaluation, we attempt to answer the question of how much the CoCoA algorithm can be
improved by scaling-in training and thus staying in front of the knee for as long as possible.

To answer this question, we compare the time-to-accuracy (duality-gap) of our static CoCoA imple-
mentation with our elastic version, using an SVM training algorithm4 and the 6 datasets shown in
Table 1. We evaluate static settings with 1, 2, 4, 8 and 16 workers as well as two elastic settings.
In the first elastic setting, we start with 16 workers and scale-in to a single worker. This represents
cases where the entire dataset fits inside a single node’s memory but limited CPU resources make
distribution beneficial anyway. In the second elastic setting, we start with 16 workers but scale-in to
only two workers. This represents cases where a dataset exceeds a single node’s memory capacity
and a model therefore cannot be trained with non-distributed methods. As convergence behavior for
2+ nodes is similar (see Figure 3), this also indicates how our method works in a larger cluster, e.g.,
when scaling from 64 to 8 nodes. All test are executed on a 17 node cluster, equipped with Intel Xeon

4we use a constant regularizer term λ = 0.01
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Dataset Examples Features Size (in-memory) Sparsity

RCV1 667,399 47,236 0.4 GB 0.16 %
KDDA 20,216,830 8,407,752 2.6 GB 1.8e-04 %
Higgs 11,000,000 28 2.5 GB 92.11 %
KDD12 54,686,452 149,639,105 17 GB 2e-05 %
Webspam 350,000 16,609,143 10 GB 0.02 %
Criteo 45,840,617 999,999 15 GB 3.9e-03 %

Table 1: Datasets used in the evaluation

E5-2640v3/E5-2650v2, 160-256 GB RAM and CentOS/Fedora 26 Linux, running 16 workers and 1
driver, connected by a FDR (56 Gb/s) Infiniband fabric. The initial set of nodes is always chosen
randomly. The results, shown in Figure 3 and Table 2, represent the best results over 6 test runs for
all schemes, to account for potential node speed variations. We set a test time limit of 10 minutes
(not including data loading). Time results include computing the duality gap.

●●

1e+00

1e−01

1e−02

1e−03

1e−04

1e−05

1e−06

1e−07

1e−08
0 1 2 3 4 5 6 7 8 9 10

time (s)

du
al

ity
−

ga
p

1 worker

2 workers

4 workers

8 workers

16 workers

elastic (1−16)

elastic (2−16)

(a) RCV1

●●

1e+00

1e−01

1e−02

1e−03

1e−04

1e−05

1e−06

1e−07

1e−08
0 10 20 30 40 50 60 70 80 90 100

time (s)

du
al

ity
−

ga
p

1 worker

2 workers

4 workers

8 workers

16 workers

elastic (1−16)

elastic (2−16)

(b) KDDA

●
●

1e+00

1e−01

1e−02

1e−03

1e−04

1e−05

1e−06

1e−07

1e−08
0 10 20 30 40 50 60 70 80 90 100

time (s)

du
al

ity
−

ga
p

1 worker

2 workers

4 workers

8 workers

16 workers

elastic (1−16)

elastic (2−16)

(c) Higgs

●
●

1e+00

1e−01

1e−02

1e−03

1e−04

1e−05

1e−06

1e−07

1e−08
0 100 200 300 400 500 600

time (s)

du
al

ity
−

ga
p

1 worker

2 workers

4 workers

8 workers

16 workers

elastic (1−16)

elastic (2−16)

(d) KDD12

●

●

1e+00

1e−01

1e−02

1e−03

1e−04

1e−05

1e−06

1e−07

1e−08
0 50 100 150 200

time (s)

du
al

ity
−

ga
p

1 worker

2 workers

4 workers

8 workers

16 workers

elastic (1−16)

elastic (2−16)

(e) Webspam

●●

1e+00

1e−01

1e−02

1e−03

1e−04

1e−05

1e−06

1e−07

1e−08
0 100 200 300 400 500 600

time (s)

du
al

ity
−

ga
p

1 worker

2 workers

4 workers

8 workers

16 workers

elastic (1−16)

elastic (2−16)

(f) Criteo

Figure 3: Duality-gap vs. time plots for the evaluated datasets and settings. Circles depict a scale-in
from 16 to 4 workers, diamonds a scale-in from 4 to 2 and 1 worker(s), respectively.

Our evaluation shows that the basic concept of Chicle – to adjust the number of workers based on
feedback from the training algorithm – has benefits for most evaluated datasets. When scaling down
to a single worker, Chicle shows an average speedup of 2× compared to the best static setting and
2.2× when scaling down to two workers. While our method does not improve upon all evaluated
settings and target accuracies (e.g., 1e− 8 for KDDA, Webspam, RCV1), the slowdown (compared to
the respective best static setting) is tolerable, and speedups are still achieved compared to non-optimal
static settings. It is important to note that the optimal static setting is not necessarily known in
advance and may require several test runs to determine. Chicle, on the other hand, is able to find an
optimal or near optimal setting automatically, which shows its robustness.

Finally, we measured data-copy rates and overhead due to scaling-in. Both metrics include the actual
data-transfer, control plane overhead and data deserialization. We measured data transfer rates of up
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Dataset 1e− 6 1e− 7 1e− 8

RCV1 1.05 (16) 1.06 (16) 0.98 (8)
KDDA 1.49 (1) 1.12 (1) 0.83 (1)
Higgs 3.21 (4) 3.14 (1) 2.24 (1)
KDD12 2.75 (16) >3.15 >2.25
Webspam 1.25 (4) 1.43 (2) 0.82 (2)
Criteo 2.82 (4) 3.80 (2) 2.76 (1)

(a) 1-16 workers

Dataset 1e− 6 1e− 7 1e− 8

RCV1 1.31 (16) 1.12 (16) 0.64 (8)
KDDA >1.28 – –
Higgs 3.46 (4) 5.96 (16) >3.63
KDD12 2.57 (16) >3.12 >2.35
Webspam 1.12 (4) 1.59 (2) 0.77 (2)
Criteo 2.63 (4) 3.23 (2) >1.08

(b) 2-16 workers
Table 2: Speed-up factor of an elastic vs. the best static setting (the number of workers of the best
static setting is given in parentheses) for reaching a target accuracy of 1− e6 – 1e− 8. In case no
static setting has reached the target accuracy within a 10 minute time-limit, we provide a minimum
speedup factor and “–” in case neither an elastic, nor a static setting has reached a target accuracy.

Setting RCV1 KDDA Higgs KDD12 Webspam Criteo

1-16 workers 0.12 s 0.73 s 0.71 s 5.04 s 2.78 s 4.52 s
2-16 workers 0.06 s 0.39 s 0.38 s 2.78 s 1.53 s 2.18 s

Table 3: Total average scale-in overhead

to 5.8 GiB/s (1.4 GiB/s on average) and overheads as shown in Table 3. As the measured times do not
constitute a significant overhead on our system, we did not implement background data transfer. For
slower networks, such a method could be used to hide data transfer times behind regular computation.

5 Related Work

To our knowledge Chicle is the first elastic CoCoA implementation. Several other elastic ML systems
exist, but in contrast to Chicle, they target efficient resource utilization rather than reducing overall
execution time. Litz [6] is an elastic ML framework that over-partitions training data into P = n×K
partitions for K physical workers. Elasticity is achieved by increasing or decreasing the amount of
partitions per node. In contrast to Chicle, Litz does not scale based on feedback from the training
algorithm nor does it improve the per-epoch training algorithm convergence rate when doing so, as
partitions are always processed independently of each other. SLAQ [11] is a cluster scheduler for
ML applications. Like Chicle, SLAQ uses feedback from ML applications, but instead of optimizing
the time to arbitrary accuracy for one application, SLAQ tries minimize the time to low accuracy for
many applications at the same time, by shifting resources from applications with low convergence
ratse to those with high ones, assuming that resources can be used more effectively there. Proteus [3]
enables the execution of ML applications using transient revocable resources, such as EC2’s spot
instances, by keeping worker state minimal at the cost of increased communication.

6 Conclusion and Future Work

In this paper we have shown experimentally, that the optimal number of workers for CoCoA changes
over the course of the training. Based on this observation we built Chicle, an elastic ML framework,
and have shown that it can outperform static CoCoA for several datasets and settings by a factor
of 2–2.2× on average, often, while using fewer resources. Future work includes additional ways
to dynamically optimize CoCoA in terms of training time and resource usage, as well as related
use-cases, e.g. neural networks [5]. Furthermore, we are working towards a theoretical foundation of
our observations.
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