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Abstract

Collaborative development of open data science projects is unsupported by existing
software development paradigms. We introduce Ballet, a software framework for
developing new supervised learning projects with many synchronous collaborators.
Feature engineering source code is submitted incrementally and validated using
extensive software tests and a streaming logical feature selection algorithm. No-
tably, Ballet is built on the same lightweight community infrastructure as existing
open-source software libraries. In a case study of predicting house prices, we show
that feature source code extracted from public notebooks can be integrated using
our framework to incrementally build a feature matrix without sacrificing modeling
performance.

1 Introduction

Open data science is a paradigm in which data science resources are deployed to address societal
problems in education, government, health, and more through community-driven, transparent analysis
of public datasets. As a recent example, the Fragile Families Challenge [8] tasked researchers and
data scientists with predicting GPA and eviction for a set of disadvantaged children. The output of
such a project is not a general-purpose software library but rather a predictive model.

These projects may attract hundreds of interested data scientists and researchers, each with unique
skills and intuition. For prospective contributors to collaborate effectively at scale, there must exist a
way to split data science tasks, like feature engineering, and then combine individual units of data
science source code, like feature functions. Unfortunately, no such framework exists.

In this paper, we propose a lightweight, collaborative framework for developing predictive models
for open data science applications through a focus on feature engineering. Under this framework,
an open-source software repository contains a curated, executable feature engineering pipeline for
transforming a raw dataset into a feature matrix. Collaborators incrementally propose new features
for inclusion in this pipeline as modular source code contributions. For each proposed feature, an
automatic process rigorously validates it for software correctness and performs streaming logical
feature selection (SLFS) to judge whether it can be merged. The resulting feature matrix can be used
as the input to an automated machine learning model or a custom algorithm. Projects built on our
“lightweight” framework do not require any computing infrastructure beyond that which is commonly
used in open-source software, like free code hosting and CI services. We implement these ideas in
the open-source Ballet framework1 and demonstrate its use in a house price prediction problem.

1https://github.com/HDI-Project/ballet
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2 Logical feature selection

The fundamental data science unit in this setting is a logical feature. A logical feature is a function
that maps raw variables in one data instance to a vector of feature values, fDj : Vp → Rqj , where V is
the set of feasible raw data values, p is the dimensionality of the raw data, and qj is the dimensionality
of the jth feature vector. Each logical feature is parameterized by D ∈ Vp × R, a training dataset
of n instances, for learned parameters such as variable statistics. Importantly, a logical feature can
produce either a scalar feature value for each instance or a vector of feature values, as in the case of
an embedding technique like PCA or the one-hot encoding of a categorical variable.

Given a training datasetD, a collection of feature functions FD = {fj |j = 1 . . .m}, and a collection
of new instances D′, we extract a feature matrix

XD′ = FD(D′) = (fD1 (D′), . . . , fDm(D′)). (1)
The logical feature selection problem is to select a subset of feature functions, F∗ ⊆ F , that
minimizes the expected loss of some learner A trained on the extracted values,

F∗ = argmin
F ′∈P(F)

E[L(AF ′)] (2)

In contrast, the traditional feature selection problem is to select a subset of the feature values
themselves, X∗ ⊆ X; this may not be directly possible or desirable in order to preserve the coherence
and interpretability of logical features.

2.1 Streaming logical feature selection

In Ballet, collaborators incrementally propose logical features, which are accepted or rejected in a
streaming fashion, a related problem to streaming feature selection (SFS) and streaming group feature
selection (Section 5). The SLFS problem consists of two sub-problems.

Definition 1 Let Ft be the set of features accepted as of time t, and let ft+1 be proposed at time
t+1. The streaming feature acceptance decision problem is to accept ft+1, setting Ft+1 = Ft∪ft+1,
or reject, setting Ft+1 = Ft.

Definition 2 The streaming feature pruning decision problem is to remove a subset S ⊆ Ft+1 of
low-quality features, setting Ft+1 = Ft+1 \ S.

Existing algorithms fit into this general formulation. For example, α-investing [25] lies within the
streaming feature acceptance stage, while OSFS [23] is implemented as an “online feature relevance”
test in the acceptance stage and an “online feature redundancy” test in the pruning stage.

3 The Ballet framework

There are two main design considerations — and associated challenges — for developing open
data science projects. First, just as each release of a software library provides patches of additional
functionality that can be applied on top of existing versions, successful open-source data science
projects must be easily patchable such that they can be improved in an incremental manner. To address
this, Ballet projects maintain a feature engineering pipeline invariant — this invariant provides that
the pipeline always be able to perform efficient, high-quality, end-to-end feature engineering on new
data instances. Maintaining this invariant in the presence of new proposed features of uncertain
quality represents a challenge. We impose a careful structure on new feature engineering source code
submissions and rigorously validate them along several dimensions. The outcome is that high-quality
features can be confidently merged to the library, while error-prone source code or unhelpful features
can be automatically rejected.

Second, we cannot rely upon custom computing infrastructure to facilitate this development expe-
rience. While it is tempting to develop a sophisticated web app backed by large cloud compute
instances and managed by dedicated DevOps professionals, this approach is simply not sustainable
for open-source development. Isolated projects may secure sponsorship from cloud providers or
funding agencies, but this is the exception, not the rule. Instead, Ballet projects must be built only
on lightweight infrastructure: common components like open-source software libraries, free source
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Figure 1: The lifecycle of a new feature, from proposal to impact on the model. A user observes
metrics of the predictive model and desires to improve it further. They clone the project, write a
new feature, and propose it for inclusion in the pipeline using one of several clients (1). Next, a
continuous integration process validates the feature on several levels and labels it as accepted or
rejected (2). After an accepted feature is merged (3), it triggers a feature pruning bot which may
propose the removal of redundant features (4). Finally, a continuous metrics bot rebuilds the pipeline,
evaluates a predictive model, and updates metrics like accuracy and feature compactness (5). The
cycle continues until performance improvements are exhausted.

code hosting, and free continuous integration (CI) testing. To achieve this, through careful design
decisions we maximize use of “community infrastructure” like GitHub2 and Travis CI.3

Finally, data science platforms often place considerable restrictions on the development style and
experience of data scientists. Besides the minimal structure we impose for integrating feature contri-
butions into feature engineering pipelines and validating new submissions, we facilitate completely
unopinionated development and modeling. Maintainers or designated collaborators can push arbitrary
code to a Ballet project, or it can be used as a versioned dependency of another project.

3.1 Creation and development of a predictive modeling project

In this section, we describe how a predictive modeling project is created, developed, and validated
using the Ballet framework.

Project instantiation Ballet renders a new repository from an included template. The repository
contains the minimal files and structure required for feature engineering and validation of proposed
features: a Ballet configuration file, metadata on the prediction problem, stubs for loading data and
building features, and more. All community-developed feature engineering source code lives in a
dedicated subdirectory, contrib. The repository is registered with GitHub and a CI provider.

The Feature abstraction The Ballet Feature is a simple but powerful abstraction that represents
a single logical feature (Section 2). Mainly, it wraps a series of transformers, each exposing a
“fit/transform” interface [3], in a robust transformer pipeline. The resulting pipeline is suitable for
implementing complicated feature engineering functions in a composable, leakage-free manner,
customized for operating on labeled, tabular datasets. It also stores detailed metadata about the logical
feature for recording data provenance and annotating outputs.

Feature engineering pipeline The resulting repository contains a usable (if, at first, empty) feature
engineering pipeline that can be executed to transform a raw dataset into a well-formed feature
matrix. To execute the pipeline, a Python entry-point is included that walks the project’s contrib
subdirectory, imports Feature objects from Python modules, combines them into a pipeline, and

2https://www.github.com
3https://www.travis-ci.org
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transforms a provided raw dataset into a well-formed feature matrix. Importantly, the pipeline is
represented as source code rather than any sort of serialized object.

Collaborative development of new features At any point, data scientists can observe the current
performance of the pipeline and be motivated to write new features and contribute them to the
repository (Figure 1). To contribute a new feature, data scientists first write source code that
instantiates a single Feature object. They then submit their code to the project through one of
several mechanisms, depending on their skill level and background. For contributors who desire
maximum control, they can manually create new source files in the correct subdirectories, commit the
addition to their own fork of the project, and open a new pull request on GitHub. Those who desire
an interactive workflow can import a Python client library that automatically generates source code
to recreate a live Feature object and creates a new feature proposal under the hood.

To ease development, we also provide ballet.eng, a library of powerful feature engineering-specific
transformers for tasks like cleaning missing data, encoding non-numeric values, and handling time
series data. This augments the transformers within scikit-learn, which are generally targeted at
the machine learning phase.

3.2 Feature validation

Potential contributors who have developed new features now hope to have them included in the
project. Once features are proposed, we must ensure that only high-quality submissions are merged
into the repository. The risks here are twofold. First, if code is introduced to the repository that
contains any errors, whether implementation errors or fragile behavior on unseen inputs, then the
feature pipeline will become useless until it is manually repaired by a project maintainer — a blocking,
time-consuming process. Second, if features are introduced that are irrelevant, redundant, or have
low predictive power, then the performance of the predictive model can be negatively impacted.
Submissions must therefore be carefully validated on several counts.

Project structure check We check the project structure given the file diffs introduced in the pull
request. The only acceptable changes are file additions of Python source files underneath the project’s
contrib subdirectory that follow a specified naming convention. The introduced module must then
define exactly one object that is an instance of Feature, which will be imported. Pull requests that
fail this check are rejected.

Feature API checks We fit the feature to the training dataset and extract features values from the
training and test datasets. We conduct a battery of tests to increase confidence that the feature would
produce acceptable feature values on unseen inputs: no missing, infinite, or non-numeric values.

Streaming feature acceptance Regardless of the feature’s implementation in software, it must
be judged by a streaming logical feature acceptance algorithm to ensure it would not impact the
usefulness of the feature matrix produced by the project. In Ballet, we provide a reference implemen-
tation of a streaming logical feature acceptance algorithm (Section 2.1), a simple adaptation of the
α-investing algorithm [25]. Other algorithms can be configured for specific predictive models.

Let Ft be the features accepted so far and let F†t = Ft ∪ ft+1 include the newly proposed feature.
Compute T = −2(logL(Ft) − logL(F†t )), where L(·) is the maximum likelihood of an OLS
estimator. Since T ∼ χ2(q), we compute a p-value and accept if p < αt, setting Ft+1 = F†t , where
αt is the α-investing step-dependent acceptance threshold [25].

Streaming feature pruning In the previous step, we can only decide to accept or reject a proposed
feature. But if a new feature is merged, then it may present an opportunity to prune existing features
which may have been newly made redundant. For example, in the OSFS algorithm [23], a feature
column x ∈ Xt is removed if there exists a subset S ⊆ Xt \ x such that y ⊥⊥ x |S. The reference
implementation in Ballet does not prune any features.

3.3 Other Considerations

Other lightweight services can expand on the core Ballet functionality described in this section. For
example, today, developers of open-source software projects rely on a variety of external integrations
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Figure 2: Performance of streaming and batch feature selection on Ames notebook features in terms
of compactness (percentage of logical features selected by algorithm, left) and R2 (center); mean
accepted and rejected features per data scientist using SLFS (right).

for functionality like testing, documentation builds, code coverage, and binary distribution. These
integrations serve to increase end-user trust that the software they are considering using will work
for their particular problem. Similarly, open-source predictive models need to assure users that
predictions will be generalize accurately and fairly to new data points. We introduce the notion of
continuous metrics, services that check out the feature engineering pipeline on each commit, train
and tune a predictive model, and report metrics on a withheld validation set. The metrics can then be
displayed on the projects documentation files using a live “metrics badge” icon.

Any software project that receives untrusted code from contributes must be mindful of security
considerations. The primary threat model for Ballet projects are well-meaning data scientists and
other contributors that submit poor features or inadvertently “break” the feature engineering pipeline.
We address the former through feature validation (Section 3.2) and the latter through lightweight
project status checks to reject patches that improperly modify core project structure, such as the
validate.py driver script or the ballet.yml configuration file. However, Ballet does conceive
of facilitating automatic merges of accepted submissions, presenting a risk if harmful code is
embedded feature functions or adversarial features are created by attackers, especially given the
public availability of validation data. A practical defense is to require a human maintainer’s approval
in the final acceptance of proposed contributions, but defending against malicious patches is an
ongoing struggle for open-source developers [16, 6, 19, 1].

4 Evaluation

There are few existing benchmarks against which to compare Ballet. Here, we focus on assessing the
usability of Ballet for synchronous feature engineering collaborations as well as the efficacy of SLFS
compared to traditional batch methods.

User study: prototype framework We evaluated a prototype of Ballet in a user study with 8
researchers and data scientists. We explained the framework and gave a brief tutorial on how to write
features. Participants were then tasked with writing features to help predict the incidence of dengue
fever given historical data from Iquitos, Peru and San Juan, Puerto Rico [7]. Three participants were
successfully able to merge their first feature within thirty minutes, while the remainder produced
features with errors or were unable to write a new feature. In interviews, participants suggested that
they found the Ballet framework helpful for structuring submissions and validating features, but were
unfamiliar with the transformer style of writing feature engineering code. Based on this feedback, we
created the ballet.eng transformer library and provided feature engineering tutorial materias for
new contributors.

Case study: Ames housing price prediction As a case study of the Ballet framework, we simulate
feature engineering collaboration on the Ames housing price dataset [5]. The challenge is to predict
home prices in Ames, Iowa given a large number of dirty, “real-world” variables.

Kaggle [12], a data science competition community, uses the Ames problem as a tutorial. We identify
9 public notebooks by Kaggle members in which they engineer features as part of their end-to-end
pipeline. We manually implement each feature as a Feature object, resulting in 249 logical features.
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We repeatedly simulate a scenario in which each Kaggle member separately submits their fea-
tures to a Ballet project. In each scenario, we iteratively select the first remaining feature from a
randomly-chosen notebook and simulate its submission and validation using SLFS (Section 3.2).
For comparison, we start with the entire set of logical features and then use a batch-mode feature
selection technique that is comparable in spirit, greedy forward selection with AIC scoring. For each
technique, we use the resulting feature matrix to make and score predictions using a baseline model.

We find that the SLFS method and traditional batch methods produce similarly compact feature
sets, with 27.6% and 24.5% of logical features accepted, respectively (Figure 2). Even though
SLFS considers each feature exactly once, it only accepts slightly more features than a greedy batch
algorithm, suggesting that many features may be considered redundant as soon as they are submitted.
Indeed, every notebook contained rejected features, suggesting that every data science duplicated
some effort of others. One concern about streaming feature selection is that a feature would be
incorrectly rejected early on when, combined with another feature that has yet to arrive, it would turn
out to be useful [11]. In the logical feature selection setting, this worry may be diminished because
the specific feature columns that are correlated arrive as a single logical feature. The modeling
performance is also similar for the streaming and the traditional settings, suggesting that modeling
performance is not negatively impacted by Ballet-style development.

5 Related Work

Streaming feature selection. Feature selection is an important topic in the machine learning and
data mining literature and has been studied extensively [11]. Interest in streaming feature selection
has accelerated as big data settings have increased the dimensionality of the variable space. The
grafting approach [17] uses stagewise gradient descent to alternately optimize free parameters and
select new features for a regularized maximum likelihood. α-investing [25] is an adaptive complexity
penalty model that bounds the false discovery rate of selecting poor features. [23] use separate
statistical tests to first add relevant features to a candidate set and subsequently remove redundant
ones. Similar approaches have been extended to group-wise feature value selection [22, 24].

Collaborative data science and machine learning. There has been much interest in facilitating
increased collaboration in machine learning, though most existing work does not provide a structured
way to ensure an effective division of labor. One exception is [20], who propose a collaborative
feature engineering system in which contributors submit source code directly to a machine learning
backend server. While Ballet shares several ideas, it uses a lightweight approach to integrate features
— suitable for open data science projects — and improves on the feature selection techniques. In
other approaches, unskilled crowd workers can be harnessed for feature engineering tasks, such
as by labeling data to provide the basis for further manual feature engineering [4], or real-time
editing interfaces, like that of [9, 10, 15], facilitate multiple users to edit a machine learning model
specification at the same time. Collaboration can also be achieved implicitly in data science and
machine learning competitions [2, 12, 14] and using networked science hubs [21]. While these have
led to state-of-the-art modeling performance, there is no natural way for competitors to integrate
source code components in a systematic way. Finally, large commercial data science platforms,
such as Domino Data Lab4 and Dataiku5, while aiming to support all aspects of data science
product infrastructure and deployment, do not explicitly provide for collaborative, incremental model
development.

6 Conclusion

In this paper, we introduced Ballet, a new framework for developing predictive models in an open-
source, collaborative way through feature engineering. We described the design and realization of
this framework and analyzed a case study involving a simulated collaboration scenario. In further
research, developer efficiency and ease of use can be evaluated in more detail, and new algorithms
can be developed to target the logical feature selection problem, perhaps targeting multiple modalities
of information about features. Finally, we hope to expand the framework to other similar problems
like data programming [18], prediction engineering [13], or survey dataset preparation and analysis.

4https://www.dominodatalab.com/
5https://www.dataiku.com/
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