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Abstract

Machine learning models are increasingly being deployed in mission-critical set-
tings, such as self-driving cars. However, these models can fail in complex ways
(e.g., a vehicle on autopilot repeatedly accelerated towards lane dividers), so it
is imperative that application developers find ways to debug these models. We
propose adapting software assertions, or boolean statements about the state of a
program that must be true, to the task of debugging ML models. With model asser-
tions, ML developers can specify constraints on model outputs, e.g., cars should not
disappear and reappear in successive frames of a video. Model assertions can be
exact or “soft,” i.e., probabilistic. We propose several ways to use model assertions
in ML debugging, including use in runtime monitoring, in performing corrective
actions, and in collecting “hard examples” to further train models with human
labeling or weak supervision. We show that, for a video analytics task, simple
assertions can effectively find errors and correction rules can effectively correct
model output (up to 100% and 90% respectively). We additionally collect and label
parts of video where assertions fire (as a form of active learning) and show that this
procedure can improve model performance by up to 2x.

1 Introduction

ML is increasingly used in mission-critical contexts, such as in self-driving vehicles [[1] or in
setting bail [2]. However, ML models can exhibit unpredictable behavior on real world-tasks. For
example, Tesla’s cars suffered multiple incidents where they accelerated into one type of highway
lane divider [3] and Google’s autonomous vehicle collided with a bus because the car expected the
bus to yield, but the bus did not [4]. Thus, it is critical to be able to debug ML models and applications.
Unfortunately, there is currently no standard means of debugging ML models.

In this work, we investigate the potential to apply one of the most basic techniques in software quality
assurance—assertions [} 6]—to debug and improve ML models. Software engineers have built
software for a wide range of mission-critical settings, such as spaceships and medical devices, for
decades using a variety of quality assurance and error detection techniques. Program assertions, or
boolean statements that must be true at execution time (e.g., the length of an array must be greater
than zero), are used as the “first line of defense” in software and have been shown to significantly
reduce the number of bugs [7].

We explore several means of using model assertions, assertions applied to the outputs of ML models,
to debug and improve models. We consider both “exact assertions,” deterministic functions on model
outputs that are similar to traditional program assertions, and “soft assertions,” which have high, but
not perfect, precision. For example, when identifying and localizing objects in video for an object
detection task, detected objects can “flicker” in and out between consecutive frames, (Figurem) or can
be highly overlapped or nested. (Figure[2). An assertion over model outputs could easily detect both
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Figure 1: Top row: example of flickering in three consecutive frames of a video. The object detection
method failed to identify the car in the second frame. Bottom row: example of correcting the output
of a model. The car bounding box in the second frame can be automatically filled in using the frames
around it. Best viewed in color.

these errors. It may be useful to make these soft assertions because some rare real-world situations
do have flickering and nested objects (e.g., a video advertisement on the side of a bus).

We explore several ways to use model assertions, at runtime and at training time:

¢ Runtime monitoring: At runtime, model assertions can be used to collect statistics on
incorrect behavior.

* Corrective action: At runtime, model assertions can be used to trigger corrective action,
e.g., by returning control to a human operator.

* Active learning: At training time, model assertions can be used to decide which new data
points to request human-annotated labels for, for active learning [8]. As model assertions
are exact or high-precision, the output of the model will likely be wrong when the assertion
triggers. Collecting data that is “difficult” for models is known to be a viable training data
collection strategy [9].

* Weak supervision: In some cases, analysts can write automatic corrective rules to propose
new labels when an assertion fires, which can then be used as a form of weak supervision [10}
[IT] to retrain the model on data where the assertion failed. For example, for the flickering
assertion, a corrective rule might fill in labels from adjacent frames.

To investigate the potential of model assertions, we evaluate a prototype implementation on a
video analytics task. Specifically, we consider the task of object detection (the task of localizing
and classifying objects) for monitoring applications. We use a single-shot detector (SSD) [12] to
determine the location of cars in a street intersection and find that it performs poorly (40.4% mAP).
As aresult, we implement two assertions over the output of the detector. We demonstrate that these
simple assertions can be written with near 100% precision. We additionally collect and label frames
of video where the assertions were triggered, which we then use to further train SSD as a form of
active learning. We show this procedure can result in up 2x improvement mAP (82.6%). Finally, we
show that weak supervision using correction rules can improve mAP by 5% with no human labeling.

2 Related Work

Verified Machine Learning. We target complex, real-world scenarios, where complete specifica-
tions may not be possible. In limited scenarios, there has been an increasing line of work for verifying
machine learning models. For example, Reluplex [13]] can verify that extremely small networks will
make correct control decisions given a fixed set of inputs and other work has shown that similarly
small networks can be verified against minimal perturbations of a fixed set of input images [14].
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(a) Example 1.
(b) Example 2.

Figure 2: Examples of when the multi-box assertion fires. Best viewed in color.

for i in range(cur_frame - 1, cur_frame - 10):
similar_boxes = get_similar_cars(cur_boxes, past_boxes[i])
if len(similar_cars) == 0: # no similar boxzes
for j in range(i - 1, cur_frame - 10):
overlapping_boxes = get_similar_cars(cur_boxes, past_boxes[j])
if len(overlapping_boxes) ==
continue
else:
raise FlickerException
else:
cur_boxes = similar_boxes

Figure 3: The pseudo-code for the flickering assertion. For each frame, the assertion inspects recent
frames and fires if there are any “gaps” between frames, e.g., if the model identifies a car in frame i
andi- 2, butnoti- /.

However, these verifications are done for very limited scenarios (e.g., small L., perturbations of
images) and not the complex, real-world scenarios we target.

Structured Prediction, Inductive Bias. Several ML methods encode structure or inductive biases
into the training procedure or models themselves [15}[16]. For example, structured prediction attempts
to predict output with additional constraints (e.g., object detection) [15]. While promising, designing
algorithms and models with specific inductive biases can be challenging for non-experts. Additionally,
these methods generally do not contain runtime checks for aberrant behavior.

Software Debugging. Writing correct software and verifying the correctness of software has a long
history, with many proposals from the research community. We hope that many such practices are
adopted in deploying machine learning models; we focus on assertions in this work [3 [6]. Assertions
have been shown to reduce the prevalence of bugs, when deployed correctly [7,[17]. There are many
other such methods, such as formal verification [18] [20]], methods of conducting large-scale
testing (e.g., fuzzing) [211,22]], and symbolic execution to trigger assertions 24].

Weak Supervision, Semi-supervised Learning. The goal of weak supervision is to leverage
higher-level and/or noisier input from human experts to improve the quality of models [25} 10, [T1].
In semi-supervised learning, structural assumptions over the data are used to leverage unlabeled
data [26]. These methods are generally used to expand the training data. For example, human experts
can write labeling functions to weakly annotate data, which can be used as training data to improve
the performance of models [11} 27]. Flipper [28] explores debugging the quality of automatically
generated training data. However, these methods generally do not contain runtime checks and, to the
best of our knowledge, have not been used as a form of active learning.

3 Overview

In this section, we give an example of how model assertions can be used and implemented.



Suppose an analyst were studying traffic flow through an intersection and deploys an object detection
method [29]]. The analyst notices that the object detection method predicts objects in some frames,
but occasionally does not detect an object as shown in Figure[T] (i.e., flickering).

The assertion can be written as in Figure[3] in which the assertion triggers if there are “gaps” of boxes
between frames. Additionally, to correct the model behavior, the missing boxes can be filled in from
the by interpolating from the boxes in the previous frames.

We explore the how model assertions can be applied to this setting in four ways, for both real-time
and batch analytics senarios. For monitoring, the analyst can collect statistics on the number of errors
to detect model drift. For corrective action, the analyst can manually inspect the data. For active
learning, the frames where the assertion fired could be stored and later be human-annotated. For
weak supervision, the analyst can write a corrective rule that can generate weak labels to further train
the model.

4 Methods

We implement a prototype for model assertions called OMG (we envision OMG to be a “model
guardian”; OMG is a recursive acronym for OMG Model Guardian). We evaluate OMG on video
analytics and plan to apply model assertions to other domains.

OMG consists of three components: an API for specifying assertions, a runtime engine for detecting
assertions when models are deployed, and a pipeline for improving models by using assertions with
weak supervision or active learning. We describe each component in turn.

OMG currently implements assertions as user defined functions (UDFs) over the model output.
For video analytics, model assertions accept the output of the model at the current frame and some
limited history. For example, for object detection, the assertion would use the bounding boxes
from the current frame and (for example) the past 10 frames as input. While this evaluation targets
object detection, we could also apply model assertions to semantic segmentation [30], instance
segmentation [31]], or image classification [32]]. As with program assertions, model assertions can
perform arbitrary computations. Finally, model assertions can have corrective rules associated with
them, which can generate weak labels for further retraining (e.g., filling in boxes for flickering).

At runtime, one or more assertions are run over the output of the current frame, along with a short
history of outputs from previous frames. At runtime, OMG can take several actions if an assertion is
triggered. First, OMG can record statistics which can subsequently be analyzed (e.g., to detect model
drift). Second, OMG can perform corrective action by returning control to a human operator. Finally,
OMG can store the data that caused assertions for further processing, such as manual analysis or
active learning.

Finally, data collected from when the assertions fired at runtime can be used as training data to further
improve the model. As model assertions are ideally high precision (i.e., the output is highly likely to
be wrong when the assertion is triggered), the output of the model is likely to be incorrect. Collecting
instances of training data that are “hard” for models is known to to be a viable strategy for improving
model quality [9]]. Data that fails assertions can be labeled in one of two ways. First, this data can be
sent to human annotators as a form of active learning. Second, if the model output can be corrected
automatically, analysts can write corrective rules that propose new labels for the data on as a form of
weak supervision [10, [11]].

S Experiments

We evaluate OMG on a real-world security camera to see 1) if model assertions can effectively
find errors and 2) if model assertions can improve model performance. We find that simple model
assertions can be written to be highly precise and can be used to significantly improve model
performance.

5.1 Experimental Configuration and Model Assertions

Dataset and model. We evaluate OMG on the night-street video from [33]]. We use post
processed Mask-RCNN labels from [33]] as ground truth, with a different day for training and testing.
The production model we debug and improve is SSD [12], a much faster object detection method
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counter = [0 for i in range(len(boxes))]
for i in range(len(boxes)):
for j in range(len(boxes)):
if i == j:
continue
if nearly_contains(box[i], box[j]):
counter[i] += 1
if counter[i] >= 2:
raise MultiBoxAssertion

Figure 4: The pseudo-code for the multibox assertion. If a box nearly contains at least two other
boxes, the assertion fires.

Assertion % of frames with incorrect behavior % of frames fixed correctly
Flickering % 90%
Multibox 100% N/A

Table 1: Assertions and the percentage of time that they correctly identify an incorrect behavior and
percentage of time correction rules correctly fix the output. The multibox assertion does not correct
the output.

than Mask R-CNN. Single-shot detectors are widely used in practice [34}35,136]. SSD executes 20 x
faster than Mask R-CNN, but produces more errors on our test video. Thus, we evaluate whether we
can find and reduce these errors using model assertions.

Assertions. We implemented two assertions: 1) to detect flickering in video (“flickering”) and 2)
to detect if a box of a car contains two other boxes of cars (“multibox”). An example of flickering
is shown in Figure [T} while methods have been proposed to reduce flickering in video [37, 38],
OMG can use model assertions both for monitoring runtime behavior and for active learning or
weak supervision to improve SSD’s performance. We also wrote a corrective rule for flickering that
automatically fills in labels based on the nearby boxes in adjacent frames for our weak supervision
experiments. An example of multibox is shown in Figure 2} the pseudo-code is shown in Figure 4]
We were unable to construct a high-precision corrective rule for the multibox assertion.

5.2 Model Assertions can Identify a Large Fraction of Errors

We ran inference using SSD over nine hours of the night-street video and then ran the flickering
and multibox model assertions over the output to see if assertions can effectively find errors. For
each assertion, we manually annotated 50 random frames where the assertion fired to check whether
the assertion actually caught a real mistake. For flickering, we also verified whether the correction
rule produced a reasonable label. The results are shown As shown in Table[T] the assertion correctly
identifies an issue 100% of the time and, in the case of flickering, the correction rule correctly fixes
the output 90% of the time. Thus, we see that simple assertions both can be highly precise and can
effectively correct model output.

5.3 Model Assertions can Improve Model Performance

To see if using model assertions as a form of active learning or weak supervision can improve model
performance, we collect frames where each assertion fired and random frame to use as training data,
from 9 hours of video. We finetuned the following variants of SSD, pretrained on MS-COCO with
2000 frames each:

* SSD trained with 1000 frames that triggered the flickering assertion and 1000 random
frames, labeled via weak supervision.

* SSD trained with 2000 random frames labeled via active learning, as a baseline.

* SSD trained with 1000 frames that triggered the flickering assertion and 1000 random
frames, labeled via active learning.

* SSD trained with 600 frames that triggered the multibox assertion and 1400 random frames,
labeled via active learning.

* SSD trained with 1000 frames that triggered the flickering assertion, 600 frames that
triggered the multibox assertion, and 1000 random frames, labeled via active learning.



Model mAP  Recall at ~80% precision

Regular SSD 40.4 36.4%
SSD, weak supervision (flickering) 454 56.5%
SSD, active learning (random) 70.1 85.0%
SSD, active learning (flickering) 80.0 87.3%
SSD, active learning (multibox) 75.0 86.6%
SSD, active learning (flickering + multibox)  82.6 87.9%

Table 2: Performance of the standard SSD, SSD trained with weak supervision for flickering, and
SSD trained with active learning on unseen data for flickering. As shown, both weak supervision and
active learning improve SSD. Assertion-based active learning outperforms labeling random frames at
a fixed labeling budget.

Model Data % of labels with flickering Reduction
Regular SSD Seen 14.3% 1x
SSD, weak supervision Seen 3.8% 3.8x
SSD, random frames Seen 2.5% 5.7
SSD, active learning Seen 1.8% 7.8%
Regular SSD Unseen 16.3% Ix
SSD, weak supervision Unseen 3.4% 4.8x
SSD, random frames Unseen 2.5% 6.4x
SSD, active learning Unseen 2.2% 7.5%

Table 3: Number of frames where flickering occurred for the standard SSD, SSD trained with weak
supervision, and SSD trained with active learning (using both assertions), both on the data that
generated the supervision and unseen data. As shown, the number of frames with flickering is reduced
after training and assertion-based active learning outperform random labeling.

As we were unable to find a correction rule for the multibox assertion, we only ran weak supervision
for the flickering assertion. We compare to an SSD pretrained on MS-COCO. In each experiment, we
used a learning rate of 10~* (active learning) or 5 x 10~° (weak supervision) and ran training for 6
epochs. We averaged two runs of retraining.

Our accuracy metrics include mean average precision (mAP), a standard metric used in object
detection [39], and recall at ~80% precision (which is what SSD achieves at a reasonable confidence
threshold relative to Mask R-CNN). We additionally count the number of times flickering occurred
before and after training. For testing, we run inference on one hour of video footage from a different
day than training.

As shown in Table 2] we see that both weak supervision and active learning improve the model’s
performance. As expected, active learning improves the model significantly (as it uses ground truth
labels) and outperforms sampling random frames at a fixed labeling budget of 2000 frames. We
additionally show the number of frames flickering occurred before and after training in Table 3| As
shown, the number of frames where flickering occurred is significantly reduced after training with
both weak supervision and active learning.

6 Conclusion

As machine learning models continue to be deployed in mission-critical settings, the need for
principled approaches of debugging machine learning models only increases. In this work, we
propose adapting program assertions to machine learning models, through the concept of model
assertions. We implement a prototype to deploy model assertions and apply it to video analytics. We
demonstrate that simple assertions can catch many errors and that they can be used as a form of weak
supervision and active learning to significantly improve model accuracy. Moving forward, we plan
to evaluate model assertions in more domains. Additionally, we hope to see other practices from
software engineering (e.g., large-scale fuzzing) adapted to machine learning applications.
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