TensorFlow
Research at Scale

Rajat Monga
import numpy as np
import tensorflow as tf

Model parameters
W = tf.Variable([0.3], tf.float32)
b = tf.Variable([0.3], tf.float32)
Model input and output
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)
loss
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
training data
x_train = [1.2, 3.4]
y_train = [0.1, -2.3]
training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):
sess.run(train, {x: x_train, y: y_train})

evaluate training accuracy
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train})
print("W: %s b: %s loss: %s" % (curr_W, curr_b, curr_loss))
What if...

You can call TensorFlow ops directly from Python?
Eager Execution

As simple as possible
Boilerplate

```python
x = tf.placeholder(tf.float32, shape=[1, 1])
m = tf.matmul(x, x)

print(m)
# Tensor("MatMul:0", shape=(1, 1), dtype=float32)

with tf.Session() as sess:
    m_out = sess.run(m, feed_dict={x: [[2.]]})
print(m_out)
# [[4.]]
```

Code like this...
x = [[2.]]
m = tf.matmul(x, x)

print(m)
tf.Tensor([[4.]], dtype= float32, shape=(1,1))
```
x = tf.gather([0, 1, 2], 7)

InvalidArgumentError: indices = 7 is not in [0, 3) [Op:Gather]
```
Python Control Flow

```python
a = tf.constant(6)
while not tf.equal(a, 1):
    if tf.equal(a % 2, 0):
        a = a / 2
    else:
        a = 3 * a + 1
print(a)
```

Outputs
```
tf.Tensor(3, dtype=int32)
tf.Tensor(10, dtype=int32)
tf.Tensor(5, dtype=int32)
tf.Tensor(16, dtype=int32)
tf.Tensor(8, dtype=int32)
tf.Tensor(4, dtype=int32)
tf.Tensor(2, dtype=int32)
tf.Tensor(1, dtype=int32)
```
Gradients

- Operations executed are recorded on a tape
- Tape is played back to compute gradients
Gradients

def square(x):
 return tf.multiply(x, x) # Or x * x

grad = tfe.gradients_function(square)

print(square(3.)) # tf.Tensor(9., dtype=tf.float32)
print(grad(3.)) # [tf.Tensor(6., dtype=tf.float32)]
Gradients

def square(x):
 return tf.multiply(x, x) # Or x * x

grad = tfe.gradients_function(square)
graddgrad = tfe.gradients_function(lambda x: grad(x)[0])

print(square(3.)) # tf.Tensor(9., dtype=tf.float32)
print(grad(3.)) # [tf.Tensor(6., dtype=tf.float32)]
print(gradgrad(3.))# [tf.Tensor(2., dtype=tf.float32)]
def log1pexp(x):
 return tf.log(1 + tf.exp(x))

grad_log1pexp = tfe.gradients_function(log1pexp)

print(grad_log1pexp(0.))

Works fine, prints [0.5]
Custom Gradients

def log1pexp(x):
 return tf.log(1 + tf.exp(x))

grad_log1pexp = tfe.gradients_function(log1pexp)

print(grad_log1pexp(100.))
Custom Gradients

```python
@tfe.custom_gradient
def log1pexp(x):
e = tf.exp(x)
def grad(dy):
    return dy * (1 - 1 / (1 + e))
return tf.log(1 + e), grad
ggrad_log1pexp = tfe.gradients_function(log1pexp)

# Gradient at x = 0 works as before.
print(grad_log1pexp(0.))  # [0.5]
# And now gradient computation at x=100 works as well.
print(grad_log1pexp(100.))  # [1.0]
```
Using GPUs

tf.device() for manual placement

```
with tf.device("/gpu:0"):
  x = tf.random_uniform([10, 10])
  y = tf.matmul(x, x)
  # x and y reside in GPU memory
```
It’s not *that* different
A Collection of Operations

TensorFlow = Operation Kernels + Composition
- Session: One way to compose operations
- Eager execution: Compose using Python
Building Models

The same APIs as graph building (tf.layers, tf.train.Optimizer, tf.data etc.)

model = tf.layers.Dense(units=1, use_bias=True)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
Building Models

```python
model = tf.layers.Dense(units=1, use_bias=True)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)

# Define a loss function
def loss(x, y):
  return tf.reduce_mean(tf.square(y - model(x)))
```
Training Models

Compute and apply gradients

```
for (x, y) in get_next_batch():
    optimizer.apply_gradients(grad_fn(x, y))
```
Training Models

Compute and apply gradients

```
grad_fn = tfe.implicit_gradients(loss)

for (x, y) in get_next_batch():
    optimizer.apply_gradients(gradient_fn(x, y))
```
No more graphs then?
Graphs are

Optimizable

- Automatic buffer reuse
- Constant folding
- Inter-op parallelism
- Automatic trade-off between compute and memory
Graphs are deployable

- TensorFlow Serving
- Mobile
- Any other C++/Java/other program

Without loss in translation between runtimes
Graphs are

Transformable
- Carve out subgraphs to offload to accelerators
- Train with quantization in mind
Imperative to declarative and back

- **Write model definition code once**
 The exact same code can execute operations in one Python process and construct graphs in another (see examples)

- **Checkpoints are compatible**
 Train eagerly, checkpoint, load in a graph, or vice-versa

- **Future:**
 Within the same Python process, selectively “compile” portions of your computations into graphs and execute
Start with eager

```
optimizer = tf.train.AdagradOptimizer(0.01)
for _ in xrange(num_iters):
    (images, labels) = iterator.next()
    optimizer.minimize(model_loss)
```
Run distributed

```python
optimizer = tf.train.AdagradOptimizer(0.01)

step = tf.train.get_or_create_global_step()
train_op = optimizer.minimize(model_loss, global_step=step)

hooks = [tf.train.StopAtStepHook(last_step=num_iters)]
with tf.train.MonitoredTrainingSession(hooks=hooks, ...) as mon_sess:
    while not mon_sess.should_stop():
        mon_sess.run(train_op)
```

Same model spec
def model_fn:
 optimizer = tf.train.AdagradOptimizer(0.01)
 optimizer = tpu.CrossShardOptimizer(optimizer)
 step = tf.train.get_or_create_global_step()
 train_op = optimizer.minimize(model_loss, global_step=step)
 return tf.estimator.EstimatorSpec(train_op=train_op, ...)

estimator = tf.tpu_estimator.TPUEstimator(model_fn=model_fn, ...)

Or even on TPUs

Same model spec
Thank you!

Rajat Monga