# MOCHA: Federated Multi-Task Learning

**NIPS '17** 

# Virginia Smith Stanford / CMU

Chao-Kai Chiang · USC

Maziar Sanjabi · USC

Ameet Talwalkar · CMU

#### MACHINE LEARNING WORKFLOW

data & problem



machine learning model



optimization algorithm



# MACHINE LEARNING WORKFLOW \( \cdot \) IN PRACTICE

data & problem



machine learning model systems setting



optimization algorithm





#### **BEYOND THE DATACENTER**

- Massively Distributed
- Node Heterogeneity
- Unbalanced
- Non-IID
- Underlying Structure



#### BEYOND THE DATACENTER

- Massively Distributed
- Node Heterogeneity

Systems Challenges

- Unbalanced
- Non-IID

Underlying Structure

Statistical Challenges

# MACHINE LEARNING WORKFLOW \( \cdot \) IN PRACTICE

data & problem



machine learning model



systems setting



optimization algorithm



# MACHINE LEARNING WORKFLOW \( \cdot \) IN PRACTICE

data & problem



systems setting



machine learning model



optimization algorithm

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \ell(\mathbf{w}, x_i) + g(\mathbf{w})$$

#### OUTLINE

- Unbalanced
- Non-IID
- Underlying Structure

Statistical Challenges

- Massively Distributed
- Node Heterogeneity

Systems Challenges

#### OUTLINE

- Unbalanced
- Non-IID
- Underlying Structure
- Statistical Challenges

- Massively Distributed
- Node Heterogeneity

Systems Challenges

#### A GLOBAL APPROACH



#### A LOCAL APPROACH



#### **OUR APPROACH: PERSONALIZED MODELS**



#### **OUR APPROACH: PERSONALIZED MODELS**



#### **MULTI-TASK LEARNING**



All tasks related



Outlier tasks



Clusters / groups



Asymmetric relationships



#### FEDERATED DATASETS

Human **Activity** 





Land Mine





#### PREDICTION ERROR

|              | Global | Local  | MTL    |
|--------------|--------|--------|--------|
| Human        | 2.23   | 1.34   | 0.46   |
| Activity     | (0.30) | (0.21) | (0.11) |
| Google 🕢 🔨   | 5.34   | 4.92   | 2.02   |
| Google Glass | (0.26) | (0.26) | (0.15) |
| Land         | 27.72  | 23.43  | 20.09  |
| Mine         | (1.08) | (0.77) | (1.04) |
| Vehicle ((   | 13.4   | 7.81   | 6.59   |
| Sensor ((")" | (0.26) | (0.13) | (0.21) |

#### OUTLINE

- Unbalanced
- Non-IID
- Underlying Structure
- Statistical Challenges

- Massively Distributed
- Node Heterogeneity

Systems Challenges

#### OUTLINE

- Unbalanced
- Non-IID
- Underlying Structure

Statistical Challenges

- Massively Distributed
- Node Heterogeneity

Systems Challenges

#### **GOAL: FEDERATED OPTIMIZATION FOR MULTI-TASK LEARNING**

$$\min_{\mathbf{W}, \mathbf{\Omega}} \sum_{t=1}^{m} \sum_{i=1}^{n_t} \ell_t(\mathbf{w}_t^T \mathbf{x}_t^i) + \mathcal{R}(\mathbf{W}, \mathbf{\Omega})$$

- $\triangleright$  Solve for **W**,  $\Omega$  in an alternating fashion
  - $ightharpoonup \Omega$  can be updated centrally
  - W needs to be solved in federated setting

#### Challenges:

- Communication is expensive
- Statistical & systems heterogeneity
  - Stragglers
  - Fault tolerance

#### **GOAL: FEDERATED OPTIMIZATION FOR MULTI-TASK LEARNING**

#### Idea:

Modify a *communication-efficient* method for the data center setting to handle:

- Multi-task learning
  - Stragglers
  - Fault tolerance

#### COCOA: COMMUNICATION-EFFICIENT DISTRIBUTED OPTIMIZATION



#### COCOA: PRIMAL-DUAL FRAMEWORK

PRIMAL

 $\geq$ 

DUAL

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^T x_i) + \lambda g(\mathbf{w}) \qquad \max_{\boldsymbol{\alpha} \in \mathbb{R}^n} -\frac{1}{n} \sum_{i=1}^n \ell^*(-\alpha_i) - \lambda g^*(X, \boldsymbol{\alpha})$$



#### **COCOA:** PRIMAL-DUAL FRAMEWORK



#### **COCOA: COMMUNICATION PARAMETER**

Main assumption: each subproblem is solved to accuracy  $\Theta$ 



#### **COCOA: COMMUNICATION PARAMETER**

Main accumption.

# challenge #2: make communication more flexible

exactly solve

inexactly solve

#### MOCHA: COMMUNICATION-EFFICIENT FEDERATED OPTIMIZATION

$$\min_{\mathbf{W}, \mathbf{\Omega}} \sum_{t=1}^{m} \sum_{i=1}^{n_t} \ell_t(\mathbf{w}_t^T \mathbf{x}_t^i) + \mathcal{R}(\mathbf{W}, \mathbf{\Omega})$$

- ightharpoonup Solve for W,  $\Omega$  in an alternating fashion
- Modify CoCoA to solve W in federated setting

$$\min_{\boldsymbol{\alpha}} \sum_{t=1}^{m} \sum_{i=1}^{n_t} \ell_t^*(-\boldsymbol{\alpha}_t^i) + \mathcal{R}^*(\mathbf{X}\boldsymbol{\alpha})$$

$$\min_{\Delta \boldsymbol{\alpha}_t} \sum_{i=1}^{n_t} \ell_t^* (-\boldsymbol{\alpha}_t^i - \Delta \boldsymbol{\alpha}_t^i) + \langle \mathbf{w}_t(\boldsymbol{\alpha}), \mathbf{X}_t \Delta \boldsymbol{\alpha}_t \rangle + \frac{\sigma'}{2} \|\mathbf{X}_t \Delta \boldsymbol{\alpha}_t\|_{\mathbf{M}_t}^2$$

#### MOCHA: PER-DEVICE, PER-ITERATION APPROXIMATIONS

New assumption:  $\theta_t^h \in [0,1]$  each subproblem is solved to accuracy  $\theta \in [0,1]$ 

#### Stragglers (Statistical heterogeneity)

- Difficulty of solving subproblem
- Size of local dataset

#### Stragglers (Systems heterogeneity)

- Hardware (CPU, memory)
- Network connection (3G, LTE, ...)
- Power (battery level)

#### **Fault tolerance**

Devices going offline

#### **CONVERGENCE**

New assumption: each subproblem is solved to accuracy  $\theta_t^h$ 

and assume: 
$$\mathbb{P}[\theta_t^h := 1] < 1$$

Theorem 1. Let  $\ell_t$  be L-Lipschitz, then

$$T \ge \frac{1}{(1 - \bar{\Theta})} \left( \frac{8L^2 n^2}{\epsilon} + \tilde{c} \right)$$

Theorem 2. Let  $\ell_t$  be  $(1/\mu)$ -smooth, then

$$T \ge \frac{1}{(1 - \bar{\Theta})} \frac{\mu + n}{\mu} \log \frac{n}{\epsilon}$$

1/ε rate

linear rate

#### MOCHA: COMMUNICATION-EFFICIENT FEDERATED OPTIMIZATION

#### Algorithm 1 Mocha: Federated Multi-Task Learning Framework

```
1: Input: Data \mathbf{X}_t stored on t=1,\ldots,m devices

2: Initialize \boldsymbol{\alpha}^{(0)} := \mathbf{0}, \, \mathbf{v}^{(0)} := \mathbf{0}

3: for iterations i=0,1,\ldots do

4: for iterations h=0,1,\cdots,H_i do

5: for devices t\in\{1,2,\ldots,m\} in parallel do

6: call local solver, returning \theta^h_t-approximate solution \Delta\boldsymbol{\alpha}_t

7: update local variables \boldsymbol{\alpha}_t\leftarrow\boldsymbol{\alpha}_t+\Delta\boldsymbol{\alpha}_t

8: reduce: \mathbf{v}\leftarrow\mathbf{v}+\sum_t\mathbf{X}_t\Delta\boldsymbol{\alpha}_t

9: Update \boldsymbol{\Omega} centrally using \mathbf{w}(\mathbf{v}) := \nabla \mathcal{R}^*(\mathbf{v})
```

10: Compute  $\mathbf{w}(\mathbf{v}) := \nabla \mathcal{R}^*(\mathbf{v})$ 

11: **return:**  $W := [w_1, ..., w_m]$ 

#### STATISTICAL HETEROGENEITY



MOCHA
CoCoA

Mb-SDCA

Mb-SGD



MOCHA & COCOA
PERFORM
PARTICULARLY WELL
IN HIGHCOMMUNICATION
SETTINGS



MOCHA IS ROBUST TO STATISTICAL HETEROGENEITY

7

6

8

 $\times 10^6$ 

#### **SYSTEMS HETEROGENEITY**



#### MOCHA SIGNIFICANTLY OUTPERFORMS ALL COMPETITORS

#### [BY 2 ORDERS OF MAGNITUDE]





#### FAULT TOLERANCE







#### **Full Method**



MOCHA IS ROBUST TO DROPPED NODES

#### OUTLINE

- Unbalanced
- Non-IID
- Underlying Structure

Statistical Challenges

- Massively Distributed
- Node Heterogeneity

Systems Challenges

#### WWW.SYSML.CC

# Virginia Smith Stanford / CMU

**CODE & PAPERS** 

cs.berkeley.edu/~vsmith