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A GLOBAL APPROACH

[MMRHA, AISTATS 16]



A LOCAL APPROACH




OUR APPROACH: PERSONALIZED MODELS




OUR APPROACH: PERSONALIZED MODELS




MULTI-TASK LEARNING
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FEDERATED DATASETS
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PREDICTION ERROR

Global Local MTL

Human 2.23 1.34
Activity (0.30) (0.21)
Google A A 5.34 4.97
Glass (0.26) (0.26)
Land 27.72 23.43
Mine (1.08) (0.77)

/.81

Vehicle 13.4
Sensor <<(‘)>> (0.26)

(0.13)
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GOAL: FEDERATED OPTIMIZATION FOR MULTI-TASK LEARNING

™m n¢

mm LL& (w; x!) +R(W, Q)

t=1 1=1

> Solve for W, Q in an alternating fashion

> € can be updated centrally
> W needs to be solved in federated setting

Challenges:
» Communication is expensive
» Statistical & systems heterogeneity
» Stragglers
» Fault tolerance




GOAL: FEDERATED OPTIMIZATION FOR MULTI-TASK LEARNING

Idea:

Modity a communication-efficient methoad
for the data center setting to handle;

v Multl-task learning
v Stragglers
v’ Fault tolerance

» Fault tolerance



COCOA: COMMUNICATION-EFFICIENT DISTRIBUTED OPTIMIZATION
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COCOA: PRIMAL-DUAL FRAMEWORK
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COCOA: PRIMAL-DUAL FRAMEWORK

challenge #1:

extend to MTL setup




COCOA: COMMUNICATION PARAMETER

Main assumption:
each subproblem is solved to accuracy ©

amount of local
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COCOA: COMMUNICATION PARAMETER

challenge #2:
make communication

more flexible
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MOCHA: COMMUNICATION-EFFICIENT FEDERATED OPTIMIZATION

™m n¢

mm LL& (w;x!) + R(W, Q)

t=1 1=1

> Solve for W, Q in an alternating fashion

> Modity CoCoA to solve W in federated setting
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MOCHA: PER-DEVICE, PER-ITERATION APPROXIMATIONS

New assumption: 0" € [0, 1]

each subproblem is solved to accuracy H==1671]

Stragglers (Statistical heterogeneity)
» Difficulty of solving subproblem
» Slze of local dataset

Stragglers (Systems heterogeneity)
» Hardware (CPU, memory)
> Network connection (3G, LTE, ...)
» Power (battery level)

Fault tolerance
» Devices going offline




CONVERGENCE

New assumption:
each subproblem is solved to accuracy 0}
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‘Theorem 1. Let /, be “Theorem 2. Let ¢, be
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MOCHA: COMMUNICATION-EFFICIENT FEDERATED OPTIMIZATION

Algorithm 1 MocCHA: Federated Multi-Task Learning Framework

1: Input: Data X; stored ont = 1,...,m devices

2. Initialize a9 := 0, v(?) .=

3: for iterations : =0,1,... do

4: for iterations h =0,1,--- , H; do

5: for devices t € {1,2,..., m} in parallel do

6: call local solver, returning 67-approximate solution A«
7: update local variables a; + o + Aoy

8: reduce: v+ v+ )  X;Aoy

9: Update € centrally using w(v) := VR*(v)
10: Compute w(v) := VR*(v)

11: return: W := [wy,..., w,,]
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SYSTEMS HETEROGENEITY

MOCHA SIGNIFICANTLY OUTPERFORMS ALL COMPETITORS

[BY 2 ORDERS OF MAGNITUDE]
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FAULT TOLERANCE

MOCHA IS ROBUST T0 DROPPED NODES
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