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DAWN Project: Making ML More Accessible
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Continued Growth of Streaming Data Volumes

• Telemetry from mobile devices
• >2B smartphones worldwide

• Application logs from web services
• Visual features from video streams

• 1000s of dashcams, security cameras

MacroBase:
prioritizing human attention
via feature selection



MacroBase: Example Use Case

Explain error class to analyst 
with [location = Canada]

Errors
{iPhone7, USA}
{iPhone7, Canada}
{iPhone8, Canada}
{iPhone7, USA}
{iPhone8, Canada}

Non-Errors
{iPhone8, USA}
{iPhone7, USA}
{iPhoneX, USA}
{iPhone7, USA}
{iPhone7, USA}
{iPhone8, USA}
{iPhone7, USA}
{iPhone7, USA}

Challenges
• Throughput:                          

streams with millions of events/sec
• Resource constraints:        

limited computation and memory
• Dimensionality:                          

high-order feature combinations      
(# phone models) x (# locations) x …

Input: stream of logs from mobile app (based on a real application)



MacroBase Stream Analytics

CLASSIFY

identify data
in tails

EXPLAIN

find disproportionately
correlated attributes

Outliers
{iPhone6, Canada}
{iPhone6, USA}
{iPhone5, Canada}

Inliers
{iPhone6, USA}
{iPhone6, USA}
{iPhone5, USA}

extract
domain-specific
signals

TRANSFORM Other projects:
• Kernel density estimation
• Dimensionality reduction
• Faster CNN queries on video
• Method-of-moments for 

quantile estimation
• Time series visualization

Papers and links:

In production at:
• major web service provider
• mobile app company
• video streaming service

macrobase.stanford.edu
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MacroBase: Streaming Feature Selection

Track most frequent features?
Not necessarily the most discriminative

Sparsity-inducing regularization?
Hard to tune a priori to satisfy memory constraints

Weight-Median Sketch
Maintain a compressed version (a sketch) of a linear classifier…
• … that supports fast updates
• … that supports queries for estimates of each weight
• … with (𝜖, 𝛿)-approximation guarantee vs. uncompressed classifier

Track (approximation of) k most heavily-weighted features

[Tai, Sharan, Bailis, Valiant. arXiv 1711.02305]

Goal: return top-k most discriminative features to the user
Setup: online learning of a linear classifier (e.g. logistic regression)



Sketched Linear Classifiers
• Sketch of 𝑥: random projection of 𝑥 to low dimension

(xt, yt) rL̂t

location = Canada 2.5
model = iPhoneX -1.9

version = 2.1.1 1.8

streaming
data

gradient
estimates

sketched
classifier

estimates of
largest weights

update

query



Accurate weight recovery in practice

feature hashing hard thresholding

frequent features

WM-Sketch (our method)

Online logistic regression on Reuters RCV1 with 4KB memory budget

(lower is better)

(# top features to estimate)



Sketched Linear Classifiers
• Sketch of 𝑥: random projection of 𝑥 to low dimension

(xt, yt) rL̂t

location = Canada 2.5
model = iPhoneX -1.9

version = 2.1.1 1.8

streaming
data

gradient
estimates

sketched
classifier

estimates of
largest weights

update

query

Takeaways
• Count-Sketch data structure can be adapted to streaming feature selection
• Essentially feature hashing with highest-magnitude features in heap
• Need only space logarithmic in original dimension
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Recap
MacroBase: making sense of the firehose

This talk: Online feature selection by 
sketching linear classifiers

Check out other DAWN projects:        
hardware + systems + ML

macrobase.stanford.edu
dawn.cs.stanford.edu

Kai Sheng Tai / kst@cs.stanford.edu


