
Machine Learning for Systems
and

Systems for Machine Learning

Jeff Dean
Google Brain team

g.co/brain

Presenting the work of many people at Google

http://g.co/brain

Google Confidential + Proprietary (permission granted to share within NIST)

Systems for Machine Learning

General Purpose Processor Performance Trends

Graph from 40 Years of Microprocessor Trend Data, Karl Rupp, CC-BY 4.0.

Single-core
performance
plateauing
after
decades of
exponential
growth

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Just when deep learning is creating insatiable
computation demands
Training powerful but computationally-expensive deep models on:

● Terabyte or petabyte-sized training datasets

Plus techniques like AutoML (“Learning to learn”, Neural Architecture
Search, etc.) can multiply desired training computation by 5-1000X

Inference using expensive deep models in systems with:

● hundreds of thousands of requests per second
● latency requirements of tens of milliseconds
● billions of users

Google Confidential + Proprietary (permission granted to share within NIST)

More computational power needed

Deep learning is transforming how we
design computers

Special computation properties

reduced
precision

ok

about 1.2

× about 0.6

about 0.7

1.21042

× 0.61127

0.73989343
NOT

handful of
specific

operations
× =

reduced
precision

ok

about 1.2

× about 0.6

about 0.7

1.21042

× 0.61127

0.73989343
NOT

Special computation properties

Tensor Processing Unit v1
Google-designed chip for neural net inference

In production use for ~36 months: used on search
queries, for neural machine translation, for speech, for
image recognition, for AlphaGo match, …

In-Datacenter Performance Analysis of a Tensor Processing
Unit, Jouppi, Young, Patil, Patterson et al., ISCA 2017,
arxiv.org/abs/1704.04760

https://arxiv.org/abs/1704.04760

TPUv1 is a huge help for inference

But what about training?

Speeding up training hugely important:
for researcher productivity, and

for increasing scale of problems that can be tackled

Tensor Processing Unit v2

Google-designed device for neural net training and inference

Tensor Processing Unit v2

Google-designed device for neural net training and inference

TPUv2 Chip
core core

HBM
8 GB

HBM
8 GB

scalar/vector
units

MXU
128x128

MXU
128x128

● 16 GB of HBM
● 600 GB/s mem BW
● Scalar/vector units:

32b float
● MXU: 32b float

accumulation but
reduced precision for
multipliers

● 45 TFLOPS

scalar/vector
units

Tensor Processing Unit v2

● 180 teraflops of computation, 64 GB of HBM memory, 2400 GB/s mem BW
● Designed to be connected together into larger configurations

TPU Pod
64 2nd-gen TPUs

11.5 petaflops
4 terabytes of HBM memory

Offered via Google Cloud
Cloud TPU - host w/180 TFLOPS TPUv2 device attached

Programmed via TensorFlow

Same program will run w/only minor modifications on CPUs, GPUs, & TPUs

Same program scales via synchronous data parallelism without modification
on TPU pods

g.co/tpusignup

http://g.co/tpusignup

Accelerated Linear Algebra (XLA)
● JIT / AOT compiler for linear algebra
● Targets multiple backends, e.g. CPUs, GPUs, and TPUs
● Compiler, runtime, and accelerator-specific optimizer
● Compiler plus CPU and GPU backends open-sourced

as part of TensorFlow

The life of a neural network:

model.py

TF Estimator code TF Graph

Accelerated Linear Algebra (XLA)
● JIT / AOT compiler for linear algebra
● Targets multiple backends, e.g. CPUs, GPUs, and TPUs
● Compiler, runtime, and accelerator-specific optimizer
● Compiler plus CPU and GPU backends open-sourced

as part of TensorFlow

The life of a neural network:

model.py

XLA
Target-independent

optimizations
Target-specific

code generation

XLA

TF Estimator code TF Graph

Internal search ranking model training:
14.2X: ~9 hours on 1/4 pod vs. ~132 hours on 275 high end CPU machines

Internal image model training:
9.8X: ~22 hours on 1/4 pod vs. ~216 hours on previous production setup

WaveNet production model inference:
Generates speech at 20X real time

Some TPU Success Stories

Resnet-50 to >76% accuracy:
1402 minutes (23 hours 22 minutes) on single TPUv2 device
45 minutes on 1/2 pod (32 TPUv2 devices, 31.2X speedup)

Resnet-50 to 75% accuracy:
22 minutes on full pod (64 TPUv2 devices)

Some TPU Success Stories

same code, no special tricks

Resnet-50 to >76% accuracy:
1402 minutes (23 hours 22 minutes) on single TPUv2 device
45 minutes on 1/2 pod (32 TPUv2 devices, 31.2X speedup)

Resnet-50 to 75% accuracy:
22 minutes on full pod (64 TPUv2 devices)

Plug:
Come see Sam Smith’s talk on “Don't Decay the Learning Rate, Increase the Batch
Size” tomorrow at 8:50 AM and Chris Ying’s talk “Imagenet is the new MNIST” at
9:30 AM, both in the Deep Learning at Supercomputing Scale workshop in 101B

Some TPU Success Stories

same code, no special tricks

TPU Scaling for ResNet-50

More than just ImageNet

Transformer model from "Attention is
All You Need"
(2017 A. Vaswani et. al., NIPS 2017)

WMT’14 English-German translation
task

Adam optimizer - same learning rate
schedule across configurations

batch size
(i/o tokens)

16k / 16k

32k / 32k

256k / 256k

1M / 1M

Time to
PPL=4.8

17.9 hours

3.5 hours

1.1 hours

0.5 hours

TPUs

1

4

16

64

Making 1000 Cloud TPUs available for free to top researchers who are
committed to open machine learning research

We’re excited to see what researchers will do with much more computation!
g.co/tpusignup

http://g.co/tpusignup

Google Confidential + Proprietary (permission granted to share within NIST)

What should we build in future ML
accelerators?

ML Arxiv Papers per Year

If you start an ASIC machine learning accelerator
design today, ...

Starts to get deployed into production in ~2 years

Must remain relevant through ~5 years from now

Can We See The Future Clearly Enough?
What should we bet on?

Some Example Questions

Precision:
Will very-low precision training (1-4 bit weights, 1-4 bit activations)
work in general across all problems we care about?

Sparsity and embeddings: How should we handle:
Dynamic routing like the sparsely-gated Mixture of Experts work (ICLR’17)

Very large embeddings for some problems (e.g. 1B items x 1000D)

Batch size:
Should we build machines for very large batch sizes? Or batch size 1?

Training algorithms:
Will SGD-like algorithms remain the dominant training paradigm?
Or will large-batch second-order methods like K-FAC be better?

Google Confidential + Proprietary (permission granted to share within NIST)

Machine Learning for Systems

Learning Should Be Used Throughout our
Computing Systems

Traditional low-level systems code (operating systems,
compilers, storage systems) does not make extensive use of
machine learning today

This should change!

A few examples and some opportunities...

Google Confidential + Proprietary (permission granted to share within NIST)

Machine Learning for
Higher Performance Machine Learning

Models

For large models, model parallelism is important

For large models, model parallelism is important

But getting good performance given multiple
computing devices is non-trivial and non-obvious

A B C D _
_ A B C

A B C D

A B C D

LSTM 1

LSTM 2

Attention

Softmax

A B C D _
_ A B C

A B C D

GPU1

GPU2

GPU3

GPU4 A B C D

LSTM 1

LSTM 2

Attention

Softmax

Reinforcement Learning for
Higher Performance Machine Learning Models

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972

Reinforcement Learning for
Higher Performance Machine Learning Models

Placement model
(trained via RL) gets
graph as input + set
of devices, outputs
device placement for
each graph node

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972

Reinforcement Learning for
Higher Performance Machine Learning Models

Measured time
per step gives
RL reward signal

Placement model
(trained via RL) gets
graph as input + set
of devices, outputs
device placement for
each graph node

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972

Device Placement with Reinforcement Learning

Measured time
per step gives
RL reward signal

Placement model (trained
via RL) gets graph as input
+ set of devices, outputs
device placement for each
graph node

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

+19.7% faster vs. expert human for InceptionV3
image model

+19.3% faster vs. expert human for neural
translation model

https://arxiv.org/abs/1706.04972

Device Placement with Reinforcement Learning

Measured time
per step gives
RL reward signal

Placement model (trained
via RL) gets graph as input
+ set of devices, outputs
device placement for each
graph node

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

+19.7% faster vs. expert human for InceptionV3
image model

+19.3% faster vs. expert human for neural
translation model

Plug: Come see Azalia Mirhoseini’s talk on “Learning Device
Placement” tomorrow at 1:30 PM in the Deep Learning at
Supercomputing Scale workshop in 101B

https://arxiv.org/abs/1706.04972

Google Confidential + Proprietary (permission granted to share within NIST)

Learned Index Structures
not

Conventional Index Structures

B-Trees are Models

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208

Indices as CDFs

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208

Does it Work?

Type Config Lookup time Speedup vs. Btree Size (MB) Size vs. Btree

BTree page size: 128 260 ns 1.0X 12.98 MB 1.0X

Learned index 2nd stage size: 10000 222 ns 1.17X 0.15 MB 0.01X

Learned index 2nd stage size: 50000 162 ns 1.60X 0.76 MB 0.05X

Learned index 2nd stage size: 100000 144 ns 1.67X 1.53 MB 0.12X

Learned index 2nd stage size: 200000 126 ns 2.06X 3.05 MB 0.23X

Index of 200M web service log records

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208

Hash Tables

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208

Bloom Filters

Model is simple RNN
W is number of units in RNN layer
E is width of character embedding

~2X space improvement over
Bloom Filter at same false positive rate

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208

Google Confidential + Proprietary (permission granted to share within NIST)

Machine Learning for Improving
Datacenter Efficiency

Collaboration between DeepMind and Google Datacenter operations teams.
See https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

ML Control On ML Control Off

Machine Learning to Reduce Cooling Cost in Datacenters

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

Google Confidential + Proprietary (permission granted to share within NIST)

Where Else Could We Use Learning?

Computer Systems are Filled With Heuristics

Compilers, Networking code, Operating Systems, …

Heuristics have to work well “in general case”

Generally don’t adapt to actual pattern of usage

Generally don’t take into account available context

Anywhere We’re Using Heuristics To Make a
Decision!
Compilers: instruction scheduling, register allocation, loop
nest parallelization strategies, …

Networking: TCP window size decisions, backoff for
retransmits, data compression, ...

Operating systems: process scheduling, buffer cache
insertion/replacement, file system prefetching, …

Job scheduling systems: which tasks/VMs to co-locate on
same machine, which tasks to pre-empt, ...

ASIC design: physical circuit layout, test case selection, …

Anywhere We’ve Punted to a User-Tunable
Performance Option!
Many programs have huge numbers of tunable command-line
flags, usually not changed from their defaults

--eventmanager_threads=16
--bigtable_scheduler_batch_size=8
--mapreduce_merge_memory=134217728
--lexicon_cache_size=1048576
--storage_server_rpc_freelist_size=128
...

Meta-learn everything
ML:

● learning placement decisions
● learning fast kernel implementations
● learning optimization update rules
● learning input preprocessing pipeline steps
● learning activation functions
● learning model architectures for specific device types, or that are fast

for inference on mobile device X, learning which pre-trained
components to reuse, …

Computer architecture/datacenter networking design:

● learning best design properties by exploring design space
automatically (via simulator)

Keys for Success in These Settings

(1) Having a numeric metric to measure and optimize
(2) Having a clean interface to easily integrate learning into

all of these kinds of systems

Current work: exploring APIs and implementations
Basic ideas:

Make a sequence of choices in some context
Eventually get feedback about those choices
Make this all work with very low overhead, even in

distributed settings
Support many implementations of core interfaces

Conclusions
ML hardware is at its infancy.
Even faster systems and wider
deployment will lead to many
more breakthroughs across a
wide range of domains.

Learning in the core of all of our
computer systems will make
them better/more adaptive.
There are many opportunities for
this.

More info about our work at g.co/brain

http://g.co/brain

