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Systems for Machine Learning



General Purpose Processor Performance Trends

Graph from 40 Years of Microprocessor Trend Data, Karl Rupp, CC-BY 4.0.

Single-core 
performance 
plateauing 
after 
decades of 
exponential 
growth

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/


Just when deep learning is creating insatiable 
computation demands
Training powerful but computationally-expensive deep models on:

● Terabyte or petabyte-sized training datasets

Plus techniques like AutoML (“Learning to learn”, Neural Architecture 
Search, etc.) can multiply desired training computation by 5-1000X

Inference using expensive deep models in systems with:

● hundreds of thousands of requests per second
● latency requirements of tens of milliseconds
● billions of users



Google Confidential + Proprietary (permission granted  to share within NIST)

More computational power needed

Deep learning is transforming how we 
design computers



Special computation properties
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Tensor Processing Unit v1
Google-designed chip for neural net inference

In production use for ~36 months: used on search 
queries, for neural machine translation, for speech, for 
image recognition, for AlphaGo match, …

In-Datacenter Performance Analysis of a Tensor Processing 
Unit, Jouppi, Young, Patil, Patterson et al., ISCA 2017, 
arxiv.org/abs/1704.04760

https://arxiv.org/abs/1704.04760


TPUv1 is a huge help for inference

But what about training?

Speeding up training hugely important:
for researcher productivity, and 

for increasing scale of problems that can be tackled



Tensor Processing Unit v2

Google-designed device for neural net training and inference



Tensor Processing Unit v2

Google-designed device for neural net training and inference



TPUv2 Chip
core core

HBM
8 GB
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● 16 GB of HBM
● 600 GB/s mem BW
● Scalar/vector units: 

32b float
● MXU: 32b float 

accumulation but 
reduced precision for 
multipliers

● 45 TFLOPS

scalar/vector 
units



Tensor Processing Unit v2

● 180 teraflops of computation, 64 GB of HBM memory, 2400 GB/s mem BW
● Designed to be connected together into larger configurations



TPU Pod 
64 2nd-gen TPUs

11.5 petaflops
4 terabytes of HBM memory



Offered via Google Cloud
Cloud TPU - host w/180 TFLOPS TPUv2 device attached

Programmed via TensorFlow

Same program will run w/only minor modifications on CPUs, GPUs, & TPUs

Same program scales via synchronous data parallelism without modification 
on TPU pods 

g.co/tpusignup

http://g.co/tpusignup


Accelerated Linear Algebra (XLA)
● JIT / AOT compiler for linear algebra
● Targets multiple backends, e.g. CPUs, GPUs, and TPUs
● Compiler, runtime, and accelerator-specific optimizer
● Compiler plus CPU and GPU backends open-sourced

as part of TensorFlow

The life of a neural network:

model.py

TF Estimator code TF Graph
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Internal search ranking model training:
14.2X: ~9 hours on 1/4 pod vs. ~132 hours on 275 high end CPU machines 

Internal image model training:
9.8X: ~22 hours on 1/4 pod vs. ~216 hours on previous production setup

WaveNet production model inference:
Generates speech at 20X real time

Some TPU Success Stories



Resnet-50 to >76% accuracy:
1402 minutes (23 hours 22 minutes) on single TPUv2 device
45 minutes on 1/2 pod (32 TPUv2 devices, 31.2X speedup)

Resnet-50 to 75% accuracy:
22 minutes on full pod (64 TPUv2 devices)

Some TPU Success Stories

same code, no special tricks



Resnet-50 to >76% accuracy:
1402 minutes (23 hours 22 minutes) on single TPUv2 device
45 minutes on 1/2 pod (32 TPUv2 devices, 31.2X speedup)

Resnet-50 to 75% accuracy:
22 minutes on full pod (64 TPUv2 devices)

Plug: 
Come see Sam Smith’s talk on “Don't Decay the Learning Rate, Increase the Batch 
Size” tomorrow at 8:50 AM and Chris Ying’s talk “Imagenet is the new MNIST” at 
9:30 AM, both in the Deep Learning at Supercomputing Scale workshop in 101B

Some TPU Success Stories

same code, no special tricks



TPU Scaling for ResNet-50



More than just ImageNet

Transformer model from "Attention is 
All You Need"
(2017 A. Vaswani et. al.,  NIPS 2017)

WMT’14 English-German translation 
task

Adam optimizer - same learning rate 
schedule across configurations

batch size
(i/o tokens)

16k / 16k

32k / 32k

256k / 256k

1M / 1M

Time to
PPL=4.8

17.9 hours

3.5 hours

1.1 hours

0.5 hours

# TPUs

1

4

16

64



Making 1000 Cloud TPUs available for free to top researchers who are 
committed to open machine learning research

We’re excited to see what researchers will do with much more computation!
g.co/tpusignup 

http://g.co/tpusignup
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What should we build in future ML 
accelerators?



ML Arxiv Papers per Year



If you start an ASIC machine learning accelerator 
design today, ...

Starts to get deployed into production in ~2 years

Must remain relevant through ~5 years from now

Can We See The Future Clearly Enough?
What should we bet on?



Some Example Questions

Precision:
Will very-low precision training (1-4 bit weights, 1-4 bit activations)
work in general across all problems we care about?

Sparsity and embeddings: How should we handle:
Dynamic routing like the sparsely-gated Mixture of Experts work (ICLR’17)

Very large embeddings for some problems (e.g. 1B items x 1000D)

Batch size:
Should we build machines for very large batch sizes?  Or batch size 1?

Training algorithms:
Will SGD-like algorithms remain the dominant training paradigm?
Or will large-batch second-order methods like K-FAC be better?
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Machine Learning for Systems



Learning Should Be Used Throughout our 
Computing Systems

Traditional low-level systems code (operating systems, 
compilers, storage systems) does not make extensive use of 
machine learning today

This should change!

A few examples and some opportunities...
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Machine Learning for
Higher Performance Machine Learning 

Models



For large models, model parallelism is important



For large models, model parallelism is important

But getting good performance given multiple 
computing devices is non-trivial and non-obvious
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Reinforcement Learning for
Higher Performance Machine Learning Models

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972


Reinforcement Learning for
Higher Performance Machine Learning Models

Placement model 
(trained via RL) gets 
graph as input + set 
of devices, outputs 
device placement for 
each graph node

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972


Reinforcement Learning for
Higher Performance Machine Learning Models

Measured time 
per step gives 
RL reward signal

Placement model 
(trained via RL) gets 
graph as input + set 
of devices, outputs 
device placement for 
each graph node

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972


Device Placement with Reinforcement Learning

Measured time 
per step gives 
RL reward signal

Placement model (trained 
via RL) gets graph as input 
+ set of devices, outputs 
device placement for each 
graph node

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

+19.7% faster vs. expert human for InceptionV3 
image model

+19.3% faster vs. expert human for neural 
translation model

https://arxiv.org/abs/1706.04972


Device Placement with Reinforcement Learning

Measured time 
per step gives 
RL reward signal

Placement model (trained 
via RL) gets graph as input 
+ set of devices, outputs 
device placement for each 
graph node

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

+19.7% faster vs. expert human for InceptionV3 
image model

+19.3% faster vs. expert human for neural 
translation model

Plug: Come see Azalia Mirhoseini’s talk on “Learning Device 
Placement” tomorrow at 1:30 PM in the Deep Learning at 
Supercomputing Scale workshop in 101B

https://arxiv.org/abs/1706.04972
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Learned Index Structures
not

Conventional Index Structures



B-Trees are Models

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208


Indices as CDFs

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208


Does it Work?

Type Config Lookup time Speedup vs. Btree Size (MB) Size vs. Btree

BTree page size: 128 260 ns 1.0X 12.98 MB 1.0X

Learned index 2nd stage size: 10000 222 ns 1.17X 0.15 MB 0.01X

Learned index 2nd stage size: 50000 162 ns 1.60X 0.76 MB 0.05X

Learned index 2nd stage size: 100000 144 ns 1.67X 1.53 MB 0.12X

Learned index 2nd stage size: 200000 126 ns 2.06X 3.05 MB 0.23X

Index of 200M web service log records

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208


Hash Tables

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208


Bloom Filters

Model is simple RNN
W is number of units in RNN layer
E is width of character embedding

~2X space improvement over
Bloom Filter at same false positive rate

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208
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Machine Learning for Improving 
Datacenter Efficiency



Collaboration between DeepMind and Google Datacenter operations teams.
See https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/ 

ML Control On ML Control Off

Machine Learning to Reduce Cooling Cost in Datacenters

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
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Where Else Could We Use Learning?



Computer Systems are Filled With Heuristics

Compilers, Networking code, Operating Systems, …

Heuristics have to work well “in general case”

Generally don’t adapt to actual pattern of usage

Generally don’t take into account available context



Anywhere We’re Using Heuristics To Make a 
Decision!
Compilers: instruction scheduling, register allocation, loop 
nest parallelization strategies, …

Networking: TCP window size decisions, backoff for 
retransmits, data compression, ...

Operating systems: process scheduling, buffer cache 
insertion/replacement, file system prefetching, …

Job scheduling systems: which tasks/VMs to co-locate on 
same machine, which tasks to pre-empt, ...

ASIC design: physical circuit layout, test case selection, …



Anywhere We’ve Punted to a User-Tunable 
Performance Option!
Many programs have huge numbers of tunable command-line 
flags, usually not changed from their defaults

--eventmanager_threads=16
--bigtable_scheduler_batch_size=8
--mapreduce_merge_memory=134217728
--lexicon_cache_size=1048576
--storage_server_rpc_freelist_size=128
...



Meta-learn everything
ML:

● learning placement decisions
● learning fast kernel implementations
● learning optimization update rules
● learning input preprocessing pipeline steps
● learning activation functions
● learning model architectures for specific device types, or that are fast 

for inference on mobile device X,  learning which pre-trained 
components to reuse, …

Computer architecture/datacenter networking design:

● learning best design properties by exploring design space 
automatically (via simulator)



Keys for Success in These Settings

(1) Having a numeric metric to measure and optimize
(2) Having a clean interface to easily integrate learning into 

all of these kinds of systems

Current work: exploring APIs and implementations
Basic ideas:

Make a sequence of choices in some context
Eventually get feedback about those choices
Make this all work with very low overhead, even in

distributed settings
Support many implementations of core interfaces



Conclusions
ML hardware is at its infancy.  
Even faster systems and wider 
deployment will lead to many 
more breakthroughs across a 
wide range of domains.

Learning in the core of all of our 
computer systems will make 
them better/more adaptive.  
There are many opportunities for 
this.

More info about our work at g.co/brain 

http://g.co/brain

