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Serving

Model

Application
Prediction-Serving for interactive applications
Timescale: ~10s of milliseconds



Prediction-Serving Challenges
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[arge and growing ecosystem

Support low-latency, high- of ML models and frameworks
throughput serving workloads



Prediction-Serving Today

Clipper aims to unify these
approaches

New class of systems:
Prediction-Serving Systems

Highly specialized systems for Offline scoring with existing
specific problems = frameworks and systems



Clipper Decouples Applications and Models
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Common Interface = Simplifies Deployment:
» Evaluate models using original code & systems

» Models run in separate processes as Docker containers
» Resource isolation: Cutting edge ML frameworks can be buggy
» Scale-out and deployment on Kubernetes




Clipper Architecture
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Status of the project
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First released in May 2017 with a focus on usability

Currently working towards 0.3 release and actively working with early
uSers
» Focused on performance improvements and better monitoring and stability

Supports native deployments on Kubernetes and a local Docker mode

Goal: Community-owned platform for model deployment and serving

» Post issues and questions on GitHub and subscribe to our mailing list clipper-
dev@googlegroups.com



Simplifying Model
Deployment with
Clipper




Getting Started with Clipper is Easy

Docker images available on DockerHub

Clipper admin is distributed as pip package:
pip install clipper_admin

Get up and running without cloning or compiling!



Clipper Connects Training and Serving
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Problem: Models
don’t run in isolation

Must extract model plus pre-
and post-processing logic



Clipper provides a library of model deployers

» Deployer automatically and intelligently saves all
prediction code
» Captures both framework-specific models and
arbitrary serializable code

» Replicates required subset of training environment
and loads prediction code in a Clipper model
container



Clipper provides a (growing) library of model deployers
»Python

»(Combine framework specific models with external featurization,
post-processing, business logic

» Currently support Scikit-Learn, PySpark, TensorFlow

»PyTorch, Caffe2, XGBoost coming soon

»Scala and Java with Spark:
»both MLLib and Pipelines APIs

»Arbitrary R functions



Ongoing Research



Supporting Modular Multi-Model Pipelines

Else
Slow but Task- If face
accurate specific Face @ detected
a model model detector
Fast If object
6 6 @ model If confident Pre-trained detected |
then return DNN Object
. detector
Ensembles can Faster inference Fostor devel ,
improve accuracy with prediction a;) er eh‘/e O%m/e” Model
cascades rough moael- specialization
reuse

How to efficiently support serving arbitrary
model pipelines?



Challenges of Serving Model Pipelines

» Complex tradeoff space of latency, throughput, and monetary cost
» Many serving workloads are interactive and highly latency-sensitive

» Performance and cost depend on model, workload, and physical resources
available

» Model composition leads to combinatorial explosion in the size of
the tradeoff space

» Developers must make decisions about how to configure individual models
while reasoning about end-to-end pipeline performance



Solution: Workload-Aware Optimizer

» Exploit structure and properties of inference computation
» |Immutable state
» Query-level parallelism
» (Compute-intensive

» Pipeline definition

> Intermingle arbitrary application code and Clipper-hosted model evaluation for
maximum flexibility

» Optimizer input
» Pipeline, sample workload, and performance or cost constraints

» Optimizer output
» Optimal pipeline configuration that meets constraints

» Deployed models use Clipper as physical execution engine for serving



Conclusion
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Challenges of serving increasingly complex models trained in
variety of frameworks while meeting strict performance demands

Clipper adopts a container-based architecture and employs
prediction caching and latency-aware batching

Clipper’s model deployer library makes it easy to deploy both
framework-specific models and arbitrary processing code

Ongoing efforts on a workload-aware optimizer to optimize the
deployment of complex, multi-model pipelines
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