Clipper
A Low-Latency Online Prediction Serving System

Dan Crankshaw
 crankshaw@cs.berkeley.edu

http://clipper.ai
https://github.com/ucbrise/clipper

December 8, 2017
Big Data

Training

Model

Serving

Query

Decision

Application

Prediction-Serving for interactive applications

Timescale: ~10s of milliseconds
Prediction-Serving Challenges

Support low-latency, high-throughput serving workloads

Large and growing ecosystem of ML models and frameworks
Prediction-Serving Today

Clipper aims to unify these approaches

New class of systems: Prediction-Serving Systems

Highly specialized systems for specific problems

Offline scoring with existing frameworks and systems
Clipper Decouples Applications and Models

Applications

Clipper

Predict ↔ RPC/REST Interface

RPC

Model Container (MC)

RPC

Caffe

RPC

TF

RPC

scikit-learn

RPC
Model Container (MC) → Common Interface → Simplifies Deployment:

- Evaluate models using original code & systems
- Models run in separate processes as Docker containers
 - Resource isolation: Cutting edge ML frameworks can be buggy
 - Scale-out and deployment on Kubernetes
Clipper Architecture

Applications

Predict

Clipper

Caching

Latency-Aware Batching

RPC

Model Container (MC)

RPC

MC

RPC

MC

RPC

MC
Status of the project

- First released in May 2017 with a focus on usability
- Currently working towards 0.3 release and actively working with early users
 - Focused on performance improvements and better monitoring and stability
- Supports native deployments on Kubernetes and a local Docker mode
- Goal: Community-owned platform for model deployment and serving
 - Post issues and questions on GitHub and subscribe to our mailing list clipper-dev@googlegroups.com

https://github.com/ucbrise/clipper
Simplifying Model Deployment with Clipper
Getting Started with Clipper is Easy

Docker images available on DockerHub

Clipper admin is distributed as pip package:

```
pip install clipper_admin
```

Get up and running without cloning or compiling!
Clipper Connects Training and Serving

```
Worker Node
  Executor
    Task
    Task

Worker Node
  Executor
    Task
    Task

Worker Node
  Executor
    Task
    Task

Driver Program
  SparkContext

Web Server

Clipper
  MC

Database

Cache
```

Clipper Connects Training and Serving
Problem: Models don’t run in isolation

Must extract model plus pre- and post-processing logic
Clipper provides a library of model deployers

- **Deployer automatically and intelligently saves all prediction code**
 - Captures both framework-specific models and arbitrary serializable code

- **Replicates required subset of training environment and loads prediction code in a Clipper model container**
Clipper provides a (growing) library of model deployers

- **Python**
 - Combine framework specific models with external featurization, post-processing, business logic
 - Currently support Scikit-Learn, PySpark, TensorFlow
 - PyTorch, Caffe2, XGBoost coming soon

- **Scala and Java with Spark:**
 - both MLLib and Pipelines APIs

- **Arbitrary R functions**
Ongoing Research
Supporting Modular Multi-Model Pipelines

Ensembles can improve accuracy

Faster inference with prediction cascades

Slow but accurate model

Fast model

If confident then return

Faster development through model-reuse

Pre-trained DNN

Task-specific model

Model specialization

If object detected

If face detected

Else

Face detector

Object detector

How to efficiently support serving arbitrary model pipelines?
Challenges of Serving Model Pipelines

- Complex tradeoff space of latency, throughput, and monetary cost
 - Many serving workloads are interactive and highly latency-sensitive
 - Performance and cost depend on model, workload, and physical resources available

- Model composition leads to combinatorial explosion in the size of the tradeoff space
 - Developers must make decisions about how to configure individual models while reasoning about end-to-end pipeline performance
Solution: Workload-Aware Optimizer

- Exploit structure and properties of inference computation
 - Immutable state
 - Query-level parallelism
 - Compute-intensive

- Pipeline definition
 - Intermingle arbitrary application code and Clipper-hosted model evaluation for maximum flexibility

- Optimizer input
 - Pipeline, sample workload, and performance or cost constraints

- Optimizer output
 - Optimal pipeline configuration that meets constraints

- Deployed models use Clipper as physical execution engine for serving
Conclusion

- Challenges of serving increasingly complex models trained in variety of frameworks while meeting strict performance demands
- Clipper adopts a container-based architecture and employs prediction caching and latency-aware batching
- Clipper’s model deployer library makes it easy to deploy both framework-specific models and arbitrary processing code
- Ongoing efforts on a workload-aware optimizer to optimize the deployment of complex, multi-model pipelines

http://clipper.ai