4ri
UC Berkeley

Clipper

A Low-Latency Online Prediction
Serving System

Dan Crankshaw
crankshaw@cs.berkeley.edu

http://clipper.ai
https://qithub.com/ucbrise/clipper '

December 8, 2017

Serving

Model

Application
Prediction-Serving for interactive applications
Timescale: ~10s of milliseconds

Prediction-Serving Challenges

g LS &
> ~
N Ay
' L X

Y o

ré c -
Caffensoton mxnet @KALDI

o

QrK.

[arge and growing ecosystem

Support low-latency, high- of ML models and frameworks
throughput serving workloads

Prediction-Serving Today

Clipper aims to unify these
approaches

New class of systems:
Prediction-Serving Systems

Highly specialized systems for Offline scoring with existing
specific problems = frameworks and systems

Clipper Decouples Applications and Models

S & 3 \\\\‘:'RQ:;&'& -] v »
W = o SN . ' | p— j
g 7 z Whay . y \ Ich fliege =\l to Canads
1 N ey~ - i it i thirsty
Er O - NS X gy : 4
als = X 5 ‘; N] >

Predict] RPC/REST Interface

rRrcf Rec] RPC]

Model Container (MC) MC MC MC

RPC] rrcf RrRec RpC]
Model Container (MC)

Spa <,'(‘Z Caffe|| ¢~ O tearn

Common Interface = Simplifies Deployment:
» Evaluate models using original code & systems

» Models run in separate processes as Docker containers
» Resource isolation: Cutting edge ML frameworks can be buggy
» Scale-out and deployment on Kubernetes

Clipper Architecture

e == NETFLIX
Predict §
Clipper

Latency-Aware Batching

RPC] rrcf RrRec] RpC]

Model Container (MO F_ F_
T 000
‘APACHE& f\c-F-Fg o v -n

Status of the project

r

https://github.com/ucbrise/clipper

~\

>

>

First released in May 2017 with a focus on usability

Currently working towards 0.3 release and actively working with early
uSers
» Focused on performance improvements and better monitoring and stability

Supports native deployments on Kubernetes and a local Docker mode

Goal: Community-owned platform for model deployment and serving

» Post issues and questions on GitHub and subscribe to our mailing list clipper-
dev@googlegroups.com

Simplifying Model
Deployment with
Clipper

Getting Started with Clipper is Easy

Docker images available on DockerHub

Clipper admin is distributed as pip package:
pip install clipper_admin

Get up and running without cloning or compiling!

Clipper Connects Training and Serving

Worker Node

APACHE

Executor SpQrK

Task || Task

Web Server

Worker Node

Executor Driver Program

Task || Task

SparkContext

Worker Node
Executor

Task

(&

docker

g. Database
\ 4

~

Task

Problem: Models
don’t run in isolation

Must extract model plus pre-
and post-processing logic

Clipper provides a library of model deployers

» Deployer automatically and intelligently saves all
prediction code
» Captures both framework-specific models and
arbitrary serializable code

» Replicates required subset of training environment
and loads prediction code in a Clipper model
container

Clipper provides a (growing) library of model deployers
»Python

»(Combine framework specific models with external featurization,
post-processing, business logic

» Currently support Scikit-Learn, PySpark, TensorFlow

»PyTorch, Caffe2, XGBoost coming soon

»Scala and Java with Spark:
»both MLLib and Pipelines APIs

»Arbitrary R functions

Ongoing Research

Supporting Modular Multi-Model Pipelines

Else
Slow but Task- If face
accurate specific Face @ detected
a model model detector
Fast If object
6 6 @ model If confident Pre-trained detected |
then return DNN Object
. detector
Ensembles can Faster inference Fostor devel ,
improve accuracy with prediction a;) er eh‘/e O%m/e” Model
cascades rough moael- specialization
reuse

How to efficiently support serving arbitrary
model pipelines?

Challenges of Serving Model Pipelines

» Complex tradeoff space of latency, throughput, and monetary cost
» Many serving workloads are interactive and highly latency-sensitive

» Performance and cost depend on model, workload, and physical resources
available

» Model composition leads to combinatorial explosion in the size of
the tradeoff space

» Developers must make decisions about how to configure individual models
while reasoning about end-to-end pipeline performance

Solution: Workload-Aware Optimizer

» Exploit structure and properties of inference computation
» |Immutable state
» Query-level parallelism
» (Compute-intensive

» Pipeline definition

> Intermingle arbitrary application code and Clipper-hosted model evaluation for
maximum flexibility

» Optimizer input
» Pipeline, sample workload, and performance or cost constraints

» Optimizer output
» Optimal pipeline configuration that meets constraints

» Deployed models use Clipper as physical execution engine for serving

Conclusion

>

Challenges of serving increasingly complex models trained in
variety of frameworks while meeting strict performance demands

Clipper adopts a container-based architecture and employs
prediction caching and latency-aware batching

Clipper’s model deployer library makes it easy to deploy both
framework-specific models and arbitrary processing code

Ongoing efforts on a workload-aware optimizer to optimize the
deployment of complex, multi-model pipelines

()

http://clipper.ail

