
Dan Crankshaw
crankshaw@cs.berkeley.edu

http://clipper.ai
https://github.com/ucbrise/clipper

December 8, 2017

A Low-Latency Online Prediction 
Serving System

Clipper



Big
Data

Training

Training

Application

Decision

Query

Model

Prediction-Serving for interactive applications
Timescale: ~10s of milliseconds

Serving



Prediction-Serving Challenges

Support low-latency, high-
throughput serving workloads

???
Create VWCaffe 3

Large and growing ecosystem 
of ML models and frameworks



Prediction-Serving Today

Highly specialized systems for 
specific problems

Decision

QueryX Y

Offline scoring with existing 
frameworks and systems

Clipper aims to unify these 
approaches

New class of systems: 
Prediction-Serving Systems



Clipper

Predict

MC MC
RPC RPC RPC RPC

Clipper Decouples Applications and Models

Applications

Model Container (MC) MC

Caffe

RPC/REST Interface



Clipper

Caffe
MC MC MC

RPC RPC RPC RPC
Model Container (MC)

Common Interface à Simplifies Deployment: 
Ø Evaluate models using original code & systems
Ø Models run in separate processes as Docker containers

Ø Resource isolation: Cutting edge ML frameworks can be buggy
Ø Scale-out and deployment on Kubernetes



Clipper Architecture

Clipper

Caffe

Applications
Predict

MC MC MC
RPC RPC RPC RPC

Caching
Latency-Aware Batching

Model Container (MC)



Status of the project

Ø First released in May 2017 with a focus on usability

Ø Currently working towards 0.3 release and actively working with early 
users
Ø Focused on performance improvements and better monitoring and stability

Ø Supports native deployments on Kubernetes and a local Docker mode

Ø Goal: Community-owned platform for model deployment and serving
Ø Post issues and questions on GitHub and subscribe to our mailing list clipper-

dev@googlegroups.com

https://github.com/ucbrise/clipper



Simplifying Model 
Deployment with 

Clipper



Getting Started with Clipper is Easy

Docker images available on DockerHub

Clipper admin is distributed as pip package:

pip install clipper_admin

Get up and running without cloning or compiling!



MC

Driver Program

SparkContext

Worker Node

Executor

Task Task

Worker Node

Executor

Task Task

Worker Node

Executor

Task Task

Web Server

Database

CacheClipper

Clipper Connects Training and Serving



Problem: Models 
don’t run in isolation

Must extract model plus pre-
and post-processing logic 



Clipper provides a library of model deployers

Ø Deployer automatically and intelligently saves all 
prediction code
Ø Captures both framework-specific models and 

arbitrary serializable code

Ø Replicates required subset of training environment 
and loads prediction code in a Clipper model 
container



Clipper provides a (growing) library of model deployers

ØPython
ØCombine framework specific models with external featurization, 

post-processing, business logic
ØCurrently support Scikit-Learn, PySpark, TensorFlow
ØPyTorch, Caffe2, XGBoost coming soon

ØScala and Java with Spark:
Øboth MLLib and Pipelines APIs

ØArbitrary R functions



Ongoing Research



Supporting Modular Multi-Model Pipelines

Ensembles can 
improve accuracy

Faster inference 
with prediction 

cascades

Fast 
model

If confident 
then return

Slow but 
accurate 

model

Faster development 
through model-

reuse

Pre-trained 
DNN

Task-
specific 

model

Model 
specialization

Object 
detector

If object 
detected

If face 
detected

Else

Face 
detector

How to efficiently support serving arbitrary 
model pipelines?



Challenges of Serving Model Pipelines

Ø Complex tradeoff space of latency, throughput, and monetary cost
Ø Many serving workloads are interactive and highly latency-sensitive
Ø Performance and cost depend on model, workload, and physical resources 

available

Ø Model composition leads to combinatorial explosion in the size of 
the tradeoff space
Ø Developers must make decisions about how to configure individual models 

while reasoning about end-to-end pipeline performance



Solution: Workload-Aware Optimizer
Ø Exploit structure and properties of inference computation

Ø Immutable state
Ø Query-level parallelism
Ø Compute-intensive

Ø Pipeline definition
Ø Intermingle arbitrary application code and Clipper-hosted model evaluation for 

maximum flexibility

Ø Optimizer input
Ø Pipeline, sample workload, and performance or cost constraints

Ø Optimizer output
Ø Optimal pipeline configuration that meets constraints

Ø Deployed models use Clipper as physical execution engine for serving



Conclusion
Ø Challenges of serving increasingly complex models trained in 

variety of frameworks while meeting strict performance demands

Ø Clipper adopts a container-based architecture and employs 
prediction caching and latency-aware batching

Ø Clipper’s model deployer library makes it easy to deploy both 
framework-specific models and arbitrary processing code 

Ø Ongoing efforts on a workload-aware optimizer to optimize the 
deployment of complex, multi-model pipelines

http://clipper.ai


