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Prediction-Serving Challenges

Support low-latency, high-
throughput serving workloads

???
Create VWCaffe 3

Large and growing ecosystem 
of ML models and frameworks



Prediction-Serving Today

Highly specialized systems for 
specific problems
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Offline scoring with existing 
frameworks and systems

Clipper aims to unify these 
approaches

New class of systems: 
Prediction-Serving Systems



Clipper

Predict

MC MC
RPC RPC RPC RPC

Clipper Decouples Applications and Models

Applications

Model Container (MC) MC

Caffe

RPC/REST Interface



Clipper

Caffe
MC MC MC

RPC RPC RPC RPC
Model Container (MC)

Common Interface à Simplifies Deployment: 
Ø Evaluate models using original code & systems
Ø Models run in separate processes as Docker containers

Ø Resource isolation: Cutting edge ML frameworks can be buggy
Ø Scale-out and deployment on Kubernetes



Clipper Architecture
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Status of the project

Ø First released in May 2017 with a focus on usability

Ø Currently working towards 0.3 release and actively working with early 
users
Ø Focused on performance improvements and better monitoring and stability

Ø Supports native deployments on Kubernetes and a local Docker mode

Ø Goal: Community-owned platform for model deployment and serving
Ø Post issues and questions on GitHub and subscribe to our mailing list clipper-

dev@googlegroups.com

https://github.com/ucbrise/clipper



Simplifying Model 
Deployment with 

Clipper



Getting Started with Clipper is Easy

Docker images available on DockerHub

Clipper admin is distributed as pip package:

pip install clipper_admin

Get up and running without cloning or compiling!
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Problem: Models 
don’t run in isolation

Must extract model plus pre-
and post-processing logic 



Clipper provides a library of model deployers

Ø Deployer automatically and intelligently saves all 
prediction code
Ø Captures both framework-specific models and 

arbitrary serializable code

Ø Replicates required subset of training environment 
and loads prediction code in a Clipper model 
container



Clipper provides a (growing) library of model deployers

ØPython
ØCombine framework specific models with external featurization, 

post-processing, business logic
ØCurrently support Scikit-Learn, PySpark, TensorFlow
ØPyTorch, Caffe2, XGBoost coming soon

ØScala and Java with Spark:
Øboth MLLib and Pipelines APIs

ØArbitrary R functions



Ongoing Research



Supporting Modular Multi-Model Pipelines

Ensembles can 
improve accuracy
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with prediction 
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How to efficiently support serving arbitrary 
model pipelines?



Challenges of Serving Model Pipelines

Ø Complex tradeoff space of latency, throughput, and monetary cost
Ø Many serving workloads are interactive and highly latency-sensitive
Ø Performance and cost depend on model, workload, and physical resources 

available

Ø Model composition leads to combinatorial explosion in the size of 
the tradeoff space
Ø Developers must make decisions about how to configure individual models 

while reasoning about end-to-end pipeline performance



Solution: Workload-Aware Optimizer
Ø Exploit structure and properties of inference computation

Ø Immutable state
Ø Query-level parallelism
Ø Compute-intensive

Ø Pipeline definition
Ø Intermingle arbitrary application code and Clipper-hosted model evaluation for 

maximum flexibility

Ø Optimizer input
Ø Pipeline, sample workload, and performance or cost constraints

Ø Optimizer output
Ø Optimal pipeline configuration that meets constraints

Ø Deployed models use Clipper as physical execution engine for serving



Conclusion
Ø Challenges of serving increasingly complex models trained in 

variety of frameworks while meeting strict performance demands

Ø Clipper adopts a container-based architecture and employs 
prediction caching and latency-aware batching

Ø Clipper’s model deployer library makes it easy to deploy both 
framework-specific models and arbitrary processing code 

Ø Ongoing efforts on a workload-aware optimizer to optimize the 
deployment of complex, multi-model pipelines

http://clipper.ai


