

End to End Optimization Stack for Deep Learning

Presenter: Tianqi Chen

Paul G. Allen School of Computer Science & Engineering University of Washington

Collaborators

University of Washington

Tianqi Chen

ML, Software Stack

Thierry Moreau

Hardware Stack

Carlos Guestrin

Luis Ceze

Arvind Krishnamurthy

Haichen Shen

GPU

Ziheng Jiang

ARM, NNVM pipeline

and many more contributors in the **DMLC** community

Built a new accelerator

Need entire software stack on top of it!

Layout transformation Quantization Operator kernel optimization Benchmarking

. . . .

Built a new accelerator

Data Layout Optimization

Data Layout Optimization Operator Fusion

Data Layout Optimization Operator Fusion

Need optimized hardware kernel for each variant, on each hardware!

Data Layout Optimization Operator Fusion Serving

Need optimized hardware kernel for each variant, on each hardware!

Hardware Back-Ends

Intermediate representation

Computational Graph IR and Remaining Gap

Examples: NGraph, XLA, NNVM, DLVM ...

Computational Graph IR and Remaining Gap Computational Graph В A Auto Differentiation Memory Plan

Operator Fusion

too many possible choices: precision, layout, fused pattern, device, threading ... Need a low level IR to express them explicitly

Backends

TVM: Low Level IR

- Concise and compact description
- Explicit control on codegen
- Ease of deployment
- Support new hardware backends

Tensor Index Expression Declaration

Compute C = dot(A, B.T)

import tvm

m, n, h = tvm.var('m'), tvm.var('n'), tvm.var('h')

- A = tvm.placeholder((m, h), name='A') ←
- B = tvm.placeholder((n, h), name='B')
- k = tvm.reduce_axis((0, h), name='k')

Shape of C

Computation Rule

CPU

GPU

Accelerators

Memory subsystem

Memory subsystem

Compute primitives

GPU

Accelerators

scalar

vector

tensor

explicitly managed

Data type

scalar

vector

tensor

Scheduling Optimizations

 (\checkmark) Data layout

Scheduling Optimizations

 (\checkmark) Data layout

 (\checkmark) Tiling

Scheduling Optimizations

- (\checkmark) Data layout
- (\checkmark) Tiling
- (\checkmark) Thread cooperation

Scheduling Optimizations

- (\checkmark) Data layout
- (\checkmark) Tiling
- (\checkmark) Thread cooperation
- (\checkmark) Latency hiding

Scheduling Optimizations

- (\checkmark) Data layout
- (\checkmark) Tiling
- (\checkmark) Thread cooperation
- (\checkmark) Latency hiding
- (\checkmark) Tensorization

Separation of Compilation and Deployment

Compilation Stack

Heavy optimizations

TVM Runtimes

Lightweight, 300 to 600 KB

Remote Execution and Profiling

Server with TVM Compiler

Devices with TVM Runtime

Performance Portable against state of art

K80, Baseline One grad student month

Credit: Leyuan Wang(AWS/UCDavis), Yuwei Hu(TuSimple), Zheng Jiang(AWS/FDU)

Coming Soon: Target New Accelerators

Tensorization

Latency Hiding

FPGA Example for building new hardware backend

Open-source soon

NNVM Compiler: Open Compiler for AI Systems

Deep Learning System Research is Just Exciting

My new optimizations works on all platforms !

can program my new accelerators from python :)

Deep Learning System Research is Just Exciting

My new optimizations works on all platforms !

I can program my new accelerators from python :)

You can be part of it!

