facebook

ONNX

Sarah Bird, Dmytro Dzhulgakov

Facebook

Deep Learning Frameworks

PYTHRCH

Tensors and Dynamic neural networks in Python with strong GPU acceleration

Flexible Development

* Research-oriented imperative model

* Python flow-control constructs

 Dynamic graph support with autograd

http://pytorch.org
Released Jan 18th

2700+ community repos
17,200+ user posts
351 contributors

facebook

Parislech

EEEEEEEEEEEEEEEEEEEEEEEE
OOOOOOOOOOOOOOOOOOOOO

I Stanford

i University

ENS

\ 4 SANVIDIA

Carnegie —_ Digital
I\'Vh‘!l()" . | Ullt\;ll}gt;k{;}rzlb.alnlltl;-'("lURlE — Reasoning
University e

< ;
o W W
N\
P

OXFORD

M\ Berkele

ECOLE POLYTECHNIQUE UNIVERSITY OF CALIFORNIA)
FEDERALE DE LAUSANNE

é Caffe?

A New Lightweight, Modular, and Scalable Deep Learning Framework

Production Powerhouse
RU N ANYWH E RE, » Scalable from small devices to large
GPUs in DC
FAST » Strong distributed training support
Your favorite deep learning technology, * Highly optimized mobile device
now from zero to scale, cloud to mobile. support

» Based on ahead-of-time static graph

Train ImageNet in1hour - no interpreter needed in prod

Research to Production

PYTHRCH

Reimplementation
takes weeks or months

é Caffe?

Merge Frameworks?

* Model transfer is important, but

PYTbRCH less common

* Difficult to optimize the tools for all

CasSes

o+
P Caffe? | ° Separate but interoperable tools is

more efficient

Shared Model Format

PYTORCH +«— @

ONNX

Deep Learning Frameworks Zoo

2 L0 eme

Caffe? PYTORCH TensorFlow

[.

O(n?) pairs

Vendor and numeric libraries

Framework Q5
backends e @Z \ | [Quatcomw

Intel/Nervana Qualcom
Apple CoreML Nvidia TensorRT ngraph SNPE

Open Neural Network Exchange

+ '
Q b Xnet B Microsoft
Caffe? PYTORCH Tenrrﬂow ‘ CNTK

€

Vendor and numeric libraries

Framework
backends

Intel/Nervana Qualcom
Apple CoreML Nvidia TensorRT ngraph SNPE

Standard?
HOW STANDARDS PROUFERATE:

(<68 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

¥7?! RiDICULOUVS!

WE NEED To DEVELOP
ONE UNNERSAL STANDARD
THAT COVERS ENERYONES

Open community

* Framework agnostic
* GitHub from the beginning
* Close partnerships and OSS contributions

AWS Facebock . Mlicrosoft

\/‘7

X AMDCl Arm QUALCOMWN
WIDIA &2 Huawel (i@ =

Unframeworks

Unframeworks

Vision: Interoperable Tools
* Accelerate research to production
* Developers can use the best combination of tools for them

* Enables more people to contribute
Approach:
* Split toolchain into smaller components

UNIX philosophy for deep learning
frameworks

Build reusable components
that work well together

(across frameworks)

;_"‘ ‘
- i

Oy

Framework anatomy

Frontend

(dev experience)

A

\ 4
Backend

(HW platform)

Modelling abstractions

Data

High level IR / Operators

Executi
on
engine

Low level IR

Kernel
compiler
TVM, TC, XLA

> ONNX

Distributed
engine

Framework glue

Device runtime
x86, CUDA, OpenCL, ...

code ATen
NN libraries
BLAS CUDNN,
MKL, MPSCNN, ...
cuBLAS, ...

Graph-level
engines
TensorRT,
CoreML, SNPE

ONNX high-level IR
5 (s

* Initial focus on exchange for inference

* SSA graph structure, serializable
* Support for structured control flow @

* Standard operator definitions

PRelu takes input data (Tensor) and slope tensor as input, and produces one output data (Tensor) where the fur
f(x) = slope * x for x < @, f(x) = x for x >= @ ., is applied to the data tensor elementwise.

* Striking balance on granularity
¢ COdified Semantics in teStS/ref SLO‘:;:ensor. “Slope " is of size 1 value is sharedacross different channels

 Common optimization passes e

T : tensor(float16), tensor(float), tensor(double)
Constrain input and output types to float tensors.

Current status

THIS JOURNEY

1% FINISHED

* ONNX IR specis V1.0
* Good coverage for vision models

* [terating on:
* Optimization-friendly RNNs
* Control Flow
* More hardware backends

Beyond static graphs:
Capturing dynamic behavior

Declarative VS

Eager mode

Python script Python interpreter
Building IR ‘ Code

o
in Python
I I o I o e I RN B T B R ‘

St e e e e R e e N I T I e e e B O

Python-independent ‘
execution

Operator
implementations

Framework’s VM

, Regular python extension
Operator Execution
implementations engine

PYTHRCH

Tracing for static graph

Record which operators were invoked

def foo(x):

y = X.mm(x) S;;e

print(y) # still works!
return vy + 1 Mat(i' p

X = torch.Tensor([[1,2],[3,4]]) Add
foo(x)

Enough to cover CNNs and static sections

Tracing for dynamic graphs o

def foo(x, w): w— @

y = torch.zeros(1, 2) v
for t in x: Add
y = y.mm(w) + t
return y §;>
MatvMul
w = torch.Tensor([[0.5, ©0.2], [0.1, ©0.4]]) .
X = torch.Tensor([[1, 2], [3, 4], [5, 6]]) Ade
foo(x, w)
x2 = torch.Tensor([[7, 8], [9, 10]) v§;>

foo(x2, w) MatMuI‘@
v

Doesn’t do what you want!

Tracing for dynamic graphs

def foo(x, w):

y = torch.zeros(1l, 2)
for t 1n X: for i = range(X.shape[0]):
y = y.mm(w) + t
return vy Mat'Mul 4/@
w = torch.Tensor([[©0.5, ©0.2], [0.1, ©0.4]]) l
X = torch.Tensor([[1, 2], [3, 4], [5, 6]1]) Add
foo(x, w)
x2 = torch.Tensor([[7, 8], [9, 10]) Y
foo(x2, w) @

Capture control flow from python?

Approaches for dynamic graphs

* Parse or compile Python (tricky)
* Use special primitives (annoying)
for t in x: » lib.For(x, y, lambda y, t:
y = y.mm(w) + t y.mm(w) + t)
* Capture common patterns like RNN
* Build DSL for subset of Python
* Make it easy to embed C++ calling back to framework

Putting it together

Capturing dynamic behavior

* Trace static portions
* Minimum rewrites for dynamic parts
* Establish tooling tor step-by-step code migration

@ ONNX Get Involved!

ONNX Is a community project.

https://onnx.ai
https://github.com/onnx

e Microsoft

facebook

