

ONNX

Sarah Bird, Dmytro Dzhulgakov
Facebook

Deep Learning Frameworks

Tensors and Dynamic neural networks in Python with strong GPU acceleration

http://pytorch.org
Released Jan 18th
500,000+ downloads
2700+ community repos
17,200+ user posts
351 contributors

Flexible Development
• Research-oriented imperative model
• Python flow-control constructs
• Dynamic graph support with autograd

A New Lightweight, Modular, and Scalable Deep Learning Framework

RUN ANYWHERE,
FAST

Your favorite deep learning technology,
now from zero to scale, cloud to mobile.

Production Powerhouse
• Scalable from small devices to large

GPUs in DC
• Strong distributed training support
• Highly optimized mobile device

support
• Based on ahead-of-time static graph

– no interpreter needed in prodTrain ImageNet in 1 hour

Research to Production

Reimplementation
takes weeks or months

• Model transfer is important, but
less common

• Difficult to optimize the tools for all
cases

• Separate but interoperable tools is
more efficient

Merge Frameworks?

Shared Model Format

Deep Learning Frameworks Zoo

Framework
backends

Vendor and numeric libraries

Apple CoreML Nvidia TensorRT
Intel/Nervana

ngraph
Qualcom

SNPE

…

O(n2) pairs

Shared model and operator representation

Open Neural Network Exchange

Framework
backends

Vendor and numeric libraries

Apple CoreML Nvidia TensorRT
Intel/Nervana

ngraph
Qualcom

SNPE

…

From O(n2) to O(n) pairs

Standard?

• Framework agnostic
• GitHub from the beginning
• Close partnerships and OSS contributions

Open community

Unframeworks

Vision: Interoperable Tools
• Accelerate research to production
• Developers can use the best combination of tools for them
• Enables more people to contribute

Approach:
• Split toolchain into smaller components

Unframeworks

UNIX philosophy for deep learning
frameworks

Build reusable components
that work well together

(across frameworks)

Framework anatomy

Backend
(HW platform)

Frontend
(dev experience)

DataModelling abstractions

High level IR / Operators

Distributed
engine

Device runtime
x86, CUDA, OpenCL, ...

BLAS
MKL,

cuBLAS, ...

NN libraries
CUDNN,

MPSCNN, ...

Graph-level
engines

TensorRT,
CoreML, SNPE

Framework glue
code

Executi
on

engine

Kernel
compiler

TVM, TC, XLA

Low level IR

gloo

ATen

• Initial focus on exchange for inference
• SSA graph structure, serializable
• Support for structured control flow
• Standard operator definitions
• Striking balance on granularity
• Codified semantics in tests/ref
• Common optimization passes

ONNX high-level IR

BatchNorm

ReLU

Conv2d

• ONNX IR spec is V1.0
• Good coverage for vision models
• Iterating on:
•Optimization-friendly RNNs
• Control Flow
•More hardware backends

Current status

Beyond static graphs:
Capturing dynamic behavior

Declarative vs Eager mode
Python script

Framework’s VM
Operator

implementations
Execution

engine

Building IR
in Python

Python-independent
execution

Python interpreter
Code

Operator
implementations

Regular python extension

Tracing for static graph
Record which operators were invoked

def foo(x):
y = x.mm(x)
print(y) # still works!
return y + 1

x = torch.Tensor([[1,2],[3,4]])
foo(x)

X

1MatMul

Add

Enough to cover CNNs and static sections

Tracing for dynamic graphs
def foo(x, w):

y = torch.zeros(1, 2)
for t in x:

y = y.mm(w) + t
return y

w = torch.Tensor([[0.5, 0.2], [0.1, 0.4]])
x = torch.Tensor([[1, 2], [3, 4], [5, 6]])
foo(x, w)
x2 = torch.Tensor([[7, 8], [9, 10])
foo(x2, w)

Doesn’t do what you want!

[0,0]

X[0]MatMul

Add

w

X[1]MatMul

Add

w

X[2]MatMul

Add

w

Tracing for dynamic graphs
def foo(x, w):

y = torch.zeros(1, 2)
for t in x:

y = y.mm(w) + t
return y

w = torch.Tensor([[0.5, 0.2], [0.1, 0.4]])
x = torch.Tensor([[1, 2], [3, 4], [5, 6]])
foo(x, w)
x2 = torch.Tensor([[7, 8], [9, 10])
foo(x2, w)

Capture control flow from python?

for i = range(X.shape[0]):

X[i]

MatMul

Add

w

[0,0]

y

• Parse or compile Python (tricky)
• Use special primitives (annoying)

• Capture common patterns like RNN
• Build DSL for subset of Python
• Make it easy to embed C++ calling back to framework

Approaches for dynamic graphs

for t in x:
y = y.mm(w) + t

lib.For(x, y, lambda y, t:
y.mm(w) + t)

• Trace static portions
• Minimum rewrites for dynamic parts
• Establish tooling for step-by-step code migration

Putting it together
Capturing dynamic behavior

Get Involved!

ONNX is a community project.

https://github.com/onnx
https://onnx.ai

