

Sarah Bird, Dmytro Dzhulgakov Facebook

Deep Learning Frameworks

PYTORCH

Tensors and Dynamic neural networks in Python with strong GPU acceleration

Flexible Development

- **Research-oriented imperative model**
- Python flow-control constructs
- Dynamic graph support with autograd

http://pytorch.org Released Jan 18th 500,000+ downloads 2700+ community repos 17,200+ user posts 351 contributors

A New Lightweight, Modular, and Scalable Deep Learning Framework

RUN ANYWHER FAST

Your favorite deep learning technolo now from zero to scale, cloud to mok

Train ImageNet in 1 hour

Caffe2

Ε,	
ogy, bile.	

Production Powerhouse

- Scalable from small devices to large **GPUs in DC**
- Strong distributed training support
- Highly optimized mobile device support
- Based on ahead-of-time static graph no interpreter needed in prod

Research to Production

PYTÖRCH

Reimplementation takes weeks or months

Caffe2

Merge Frameworks?

Caffe2

cases

- Model transfer is important, but
 - less common
- Difficult to optimize the tools for all
- Separate but interoperable tools is more efficient

Shared Model Format

PYTÖRCH

Deep Learning Frameworks Zoo Microsoft mxnet Caffe2 PYTÖRCH **Tensor**Flow O(n²) pairs Vendor and numeric libraries Framework .* backends max Intel/Nervana Qualcom SNPE Apple CoreML Nvidia TensorRT ngraph

Open Neural Network Exchange

Shared model and operator representation

Framework backends

From $O(n^2)$ to O(n) pairs

Vendor and numeric libraries

Standard?

SITUATION: THERE ARE 14 COMPETING STANDARDS.

14?! RIDICULOUS! WE NEED TO DEVELOP ONE UNIVERSAL STANDARD THAT COVERS EVERYONE'S USE CASES. YEAH!

SITUATION: THERE ARE 15 COMPETING STANDARDS.

500N:

Open community

- Framework agnostic
- GitHub from the beginning
- Close partnerships and OSS contributions

NVIDIA

aws Facebook Open Source Microsoft AMDZ CIM GUALCOM® (intel)

Unframeworks

Unframeworks

Vision: Interoperable Tools

- Accelerate research to production
- Developers can use the best combination of tools for them
- Enables more people to contribute

Approach:

• Split toolchain into smaller components

Framework anatomy

Frontend

(dev experience)

ONNX high-level IR

- Initial focus on exchange for inference
- SSA graph structure, serializable
 - Support for structured control flow
- Standard operator definitions
 - Striking balance on granularity
 - Codified semantics in tests/ref
- Common optimization passes

PRelu

data (Tensor) and slope tensor as input, and produces one output data (Tensor) where the fu f(x) = slope * x for x < 0, $f(x) = x \text{ for } x \ge 0$, is applied to the data tensor elementwise

Inputs

x : T Input tensor

SLope : T Slope tensor. If `Slope` is of size 1, the value is sharedacross different channels

Outputs

Y : T Output tensor

Type Constraints

T : tensor(float16), tensor(float), tensor(double) Constrain input and output types to float tensors

Current status

- ONNX IR spec is V1.0
- Good coverage for vision models
- Iterating on:
 - Optimization-friendly RNNs
 - Control Flow
 - More hardware backends

THIS JOURNEY 1% FINISHED

Beyond static graphs: Capturing dynamic behavior

Tracing for static graph Record which operators were invoked

def foo(x):
 y = x.mm(x)
 print(y) # still works!
 return y + 1

x = torch.Tensor([[1,2],[3,4]])
foo(x)

Enough to cover CNNs and static sections

Tracing for dynamic graphs def foo(x, w): y = torch.zeros(1, 2)for t in x: y = y.mm(w) + treturn y

w = torch.Tensor([[0.5, 0.2], [0.1, 0.4]])x = torch.Tensor([[1, 2], [3, 4], [5, 6]])foo(x, w) $x^{2} = torch.Tensor([7, 8], [9, 10])$ foo(x2, w)

Doesn't do what you want!

Tracing for dynamic graphs def foo(x, w): y = torch.zeros(1, 2) for t in x: y = y.mm(w) + t return y

w = torch.Tensor([[0.5, 0.2], [0.1, 0.4]])
x = torch.Tensor([[1, 2], [3, 4], [5, 6]])
foo(x, w)
x2 = torch.Tensor([[7, 8], [9, 10])
foo(x2, w)

Capture control flow from python?

Approaches for dynamic graphs

- Parse or compile Python (tricky)
- Use special primitives (annoying)

- <u>Capture common patterns like RNN</u>
- <u>Build DSL for subset of Python</u>
- <u>Make it easy to embed C++ calling back to framework</u>

- (tricky) noying)
- lib.For(x, y, lambda y, t:
 y.mm(w) + t)

Putting it together Capturing dynamic behavior

- Trace static portions
- Minimum rewrites for dynamic parts
- Establish tooling for step-by-step code migration

amic parts sy-step code migration

ONNX is a community project.

https://onnx.ai https://github.com/onnx

Facebook Open Source Microsoft

