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Abstract

Recent deep learning (DL) models have moved beyond static network architectures
to dynamic ones, handling data where the network structure changes every example,
such as sequences of variable lengths, trees, and graphs. Existing dataflow-based
programming models for DL—both static and dynamic declaration—either cannot
readily express these dynamic models, or are inefficient due to repeated dataflow
graph construction and processing, and difficulties in batched execution. We present
Cavs, a vertex-centric programming interface and optimized system implemen-
tation for dynamic DL models. Cavs represents dynamic network structure as a
static vertex function F and a dynamic instance-specific graph G, and performs
backpropagation by scheduling the execution of F following the dependencies
in G. Cavs bypasses expensive graph construction and preprocessing overhead,
allows for the use of static graph optimization techniques on pre-defined operations
in F, and naturally exposes batched execution opportunities over different graphs.
Experiments comparing Cavs to two state-of-the-art frameworks for dynamic NNs
(TensorFlow Fold and DyNet) demonstrate the efficacy of this approach: Cavs
achieves a near one order of magnitude speedup on training of various dynamic NN
architectures, and ablations demonstrate the contribution of our proposed batching
and memory management strategies.

1 Introduction

Deep learning (DL), which refers to a class of neural networks (NNs) with deep architectures, is
now a workhorse powering state-of-the-art results on a wide spectrum of tasks [48} 49, 27]. One
reason for its widespread adoption is the variety and quality of software toolkits, such as Caffe [22],
TensorFlow [1] and DyNet [29} 30]], which ease programming of DL models, and speed computation
by harnessing modern computing hardware (e.g. GPUs), software libraries (e.g. CUDA, cuDNN [7]]),
and compute clusters [S1} 152} [8]. One dominant paradigm in the training of DL models, adopted by
toolkits such as Caffe and TensorFlow, uses static dataflow graphs [[1,128]]. These graphs represent the
flow of data through computational functions, and are defined using symbolic programming [4} 1],
once before beginning training or testing of the model. The training of these models is performed
through auto-differentiation, in which users are only required to assemble their model architectures by
connecting operators using high-level language interface (e.g. Python), after which the framework will
automatically derive the correct algorithm for training [3]]. With proper optimization, the execution of
these static dataflow graphs can be highly efficient. Specifically, by separating model declaration and
execution, it makes it possible for the graph to be further processed and optimized before runtime [[1]].
In addition, the evaluation of multiple data samples in a dataflow graph can be naturally batched to
leverage the improved computational capability of modern hardware (e.g. GPUs), which is extremely
advantageous for DL workloads [23]].
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While these static dataflow graphs have major efficiency advantages, their applicability highly relies
on a key assumption — the dataflow graph (i.e. NN architecture) fixed throughout the runtime. With
the increasing complexity of the problems to be addressed, DL has been extended and applied on
data with more complicated structures, such as sequences [20} 371, trees [38]] and graphs [24]], over
which the NN may conditionally choose its own computation order for specific modeling needs, i.e.
the structure of its dataflow graph changes over training. To better support these dynamic models,
some recent frameworks [43] 29] propose to declare a dataflow graph per sample (a.k.a. dynamic
declaration). While dynamic declaration is convenient to developers as code can basically be written
in the same way as it usually is in the native programming language (e.g. Python, C++), it exhibits a
few limitations. First, programmers still have to write code to explicitly assemble the dataflow graph
for each input sample, which might be nontrivial for graphs with sophisticated structures. Second, as
the graph construction needs to be performed repeatedly, its overhead grows linearly with the number
of training instances, preventing the application of complex static graph optimization techniques (in
fact, graph construction takes longer time than the computation in some frameworks [25]]). Finally,
since each sample owns a dataflow graph specifying its unique computational pattern, batching
together similarly shaped computations across instances is non-trivial. Without batching operations,
the computation is inefficient due to its lack of ability to exploit modern computational hardware,
and while some progress has been made in recent research [30, 25]], how to automatically batch the
computational operations from different graphs remains a difficult problem.

To address these challenges, we present Cavs, a new programming interface for dynamic NNs, and a
system implementation with optimization strategies tailored to it. Cavs leverages the recurrent and
recursive nature of dynamic NNs. Instead of declaring a dataflow graph per sample, it alternatively
decomposes a dynamic dataflow graph as two components: one static vertex function F that is
only declared (by the user) and optimized once, and an input graph G that is instance-specific and
not used until runtime. Thereby, the workflow of training a dynamic NN can be represented as
scheduling the execution of F following the structure of the input graph G. Cavs combines the best
of symbolic construction of dataflow graphs for DL [[L, 4] with the vertex-centric model [[14] in graph
computing: it only requires users to define F symbolically by “thinking locally like a vertex” [42].
Cavs will perform auto-differentiation, schedule the function execution following the dependency
reflected by G, and guarantee efficiency and correctness. It also inherits the flexibility of symbolic
programming, i.e. users are allowed to declare multiple vertex functions to express more dynamics,
or connect static dataflow graphs with dynamic ones to construct more complex NN architectures.
Cavs demonstrates a few advantages over other programming models. It simplifies user programs
and avoids the overhead of repeated dataflow graph construction. Moreover, this vertex-centric
model naturally exposes opportunities for batched computation. Compared to dynamic declaration,
as the dataflow graph encoded by the vertex function is static throughout the runtime, it can benefit
from various static graph optimizations [1} 6} [13}[15], such as lazy batching, streaming, and kernel
fusion, which would otherwise be less effective on the scenario of dynamic declaration because of
the repeated preprocessing/optimization cost (see §2)).

We implement Cavs as an additional layer pluggable to most existing DL frameworks to enhance their
support for dynamic NNs. To evaluate its performance, we compare Cavs to TensorFlow Fold [25]]
and DyNet [29,130]], two state-of-the-art systems supporting dynamic NNs and dynamic batching. We
focus our experiments on GPU training, and verify that both Fold and DyNet suffer from substantial
overhead caused by repeated graph preprocessing or construction, which is bypassed by Cavs (§2?).
In terms of overall performance, on static NNs, Cavs demonstrates equivalent or slightly better
performance than Fold and DyNet, while on several dynamic NNs with notably difficult-to-batch
workloads (e.g. Tree-LSTM [38] and Tree-FC [25]]), Cavs demonstrates near one order of magnitude
speedups across various dataset and hyper-parameter settings (§4).

. . Graph Cons. Graph Exec.
Model Frameworks Expressiveness | Batching Overhead Optimization
. . Caffe, Theano, .
static declaration TensorFlow, MxNet X X low beneficial
dynamic declaration . .
(instant evaluation) PyTorch, Chainer Vv X N/A unavailable
dynamic declaration .
(lazy evaluation) DyNet Vv v high not beneficial
Fold TensorFlow-Fold NV v/ high unknown
Vertex-centric Cavs V4 Vi low beneficial

Table 1: The landscape of existing programming models for dynamic NN.




2 Related Work

Table |1| gives an overview of the landscape Most existing DL frameworks, including Caffe [22],
Theano [4], Tensorflow [[1], MxNet [6], adopt the static declaration model in which a user declares
the network architecture symbolically before the computation. When dealing with NNs with fixed
structures (e.g. CNNs), they have been prove quite successful in both programmability and efficiency.
However, to express dynamic NNs, a user has to declare one dataflow graph per input sample
(i.e. dynamic declaration), which might not be flexible, and sometimes causes substantial graph
construction overhead. In terms of performance, single-instance training is usually performed in this
case, as it is not obvious to both users and developers how the computation of multiple dataflow graphs
with different structures can be batched. Tensorflow Fold [25] and DyNet [30] go one step further and
perform auto-batching for users. Fold proposes a by-depth batching strategy to batch same operations
at the same depth of multiple (different) graphs, along with some functional programming-like APIs
based on TensorFlow’s control flow APIs. DyNet, on the other hand, tries to minimize its graph
construction overhead, and implements both the by-depth and by-agenda batching strategies to seek
for more batching opportunities during the evaluation of multiple dataflow graphs. As shown in our
experiments, they are less effective than Cavs.We also note there are some “imperative” frameworks,
such as PyTorch [[12] and Chainer [44] that allow users to construct dynamic NNs. However, as
model construction and execution are coupled, it is usually difficult to perform dynamic batching.
Overall, they are still far from efficient when handling dynamic NNs.

3 Cavs Design

Our motivation comes from several key principles ML developers usually comply with to ensure the
feasibility and learnability of the model during their design of dynamic NNs. We note most dynamic
NNs are designed to exhibit a recursive structure (e.g. sequence RNN, Tree-RNN), or a combination
of static and recursive structures (e.g. LRCN [10, 2], attention [47]), or even a combination of
different recursive structures (e.g. encoder-decoder RNNs [37]). Within one such structure, a function
is dynamically applied over instance-specific graphs, and every vertex of the graph usually interacts
in a same way with it neighboring vertices following the function. The computational function itself,
however, is usually static and parameterized by fixed learnable parameters.

This observation motivates us to design a new programming model, called Cavs, that combines the
best of dataflow graphs with the vertex-centric model in graph computing. For clarity, we will use the
following terminology and notation in the rest of the paper: we call the instance-specific structure
associated with the input sample as an input graph, and notate it as G, and a node in that graph as
a vertex, to be distinguished from a dataflow graph D and the nodes (which are usually operators
or variables) therein. Figure [I]illustrates the concept of this vertex-centric programming model. To
describe an aforementioned dynamic structure, different from dynamic declaration, which requires
users to manually declare dataflow graphs for each sample according to its associated graph, Cavs
instead directly takes it as an input argument. To be aware of what computation shall be performed,
Cavs requires users to implement a simple vertex function F by “thinking like a vertex”, informing
the framework how one vertex in a dynamic NN will interact with its connected vertices (if these
is any). In F, users can utilize conventional DL operators to assemble a symbolic construct that
will be evaluated dynamically following the structure of G, while Cavs will ensure the correctness
and efficiency. Therefore, a vertex function F, together with an input graph G, implicitly encodes a
recurrent dataflow graph, which maps to a subgraph of the implicit full dataflow graph of the model
that may needs to be explicitly declared in traditional programming models. For convenience of
notations, we will call any part of the structure that cannot be encoded by F and G as external to
(F,G), and vice versa. Cavs allows users to connect any external static dataflow graph to a dynamic
structure encoded by (F, G) to express various model architectures (e.g. connecting a CNN to an
RNN), or declare multiple vertex functions for different structures, and connect them appropriately to
express more complex models (e.g. an encoder-decoder LSTM network).

While it is still necessary to create an I/O function to read input graphs for each sample, this must be
done in any models, and only once before training commences, which means that it can be shared
across epochs or even training runs. Cavs no longer requires users to construct the full dataflow
graphs for each sample by themselves. As repeated graph construction is bypassed, the overhead will
also be avoided. With this vertex-centric model, Cavs transforms the problem of evaluating multiple
dataflow graphs with different structures [25} [30] into a simpler form — scheduling the execution
of the vertex functions following the input graphs. For the later problem, we can easily batch the
execution of F over multiple vertices at runtime, leveraging the batching computational capability of



modern hardware. Moreover, as the vertex function itself maps to a static symbolic dataflow graph, it
is open and can benefit from various graph optimization techniques originally developed for static
declaration, such as kernel fusion, streaming, and our proposed lazy batching, which might not be
effective in the scenario of dynamic declaration. We next describe Cavs’ APIs.

¥

gather f scatter

3.1 Programming Interface

Besides the generic math operators used to declare
the computation, Cavs exposes four symbolic APIs Chain
for users to specify how the messages shall be passed 11
between vertices in their vertex functions: gather, 110
scatter, pull, push.
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e scatter(op): scatter is a reverse API Figure I: Cavs represents a dynamic structure as
of gather, and has a symbol op as its in- 2 dynamic input graph G (left) and a static vertex
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current vertex to gather/scatter buffer.

gather and scatter resemble the GAS model in graph computing [[14] — both are vertex-centric
APIs that help users express the overall computational patterns by thinking locally like a vertex:
gather receives messages from dependent vertices, while scatter updates information to parent
vertices. But note several key differences: (1) gather and scatter here are fully symbolic — gather
allows backpropagation through it; (2) In graph computing, all nodes interact with their connected
nodes in the same way following a user-specified apply function, while in dynamic NN, a vertex
usually interacts differently with its different child vertices, specified by the symbolic programs
(between the call of gather and scatter) in the vertex function; (3) In graph computing, a vertex
of a graph always interacts with other vertices of this graph, while in DL, the vertex of a dynamic
NN usually takes input from not only the internal of the structure expressed by F and G (internal
data path in Figure[I)), but also from the external of it, e.g. a step in an RNN can take inputs from a
CNN feature extractor or some external I/O (external data path in Figure|[T). In this case, gather and
scatter are insufficient to express such semantics. Cavs therefore provides another two APIs:

e pull(): pull grabs inputs from the external of the current dynamic structure, e.g. another
NN, or some 1/0.

e push(op): push is thus the reverse of pull that sets the output of the current vertex as op.
If this vertex is pulled by others, the content of op will be returned.

With appropriate indexing, push and pull connect a vertex inside a dynamic structure expressed by
(F, Q) to other connectors external to (F, G), such as another dynamic structure, or another static
dataflow graph.

Expressiveness. With these four APIs, Cavs can be seen as a middle ground between static and
dynamic declaration: In the best case, the model can be easily represented by a single vertex function
plus input graphs. While in the worse case scenario, that every sample has a unique input graph while
every vertex in the graph has a unique way to interact with its neighboring vertices, Cavs reduces to
dynamic declaration that one has to define a vertex function for each vertex of input graphs. However,
dynamic NNs in this scenario are very rare and usually not preferred because of the difficulty of
design, programming and learning.

Auto-differentiation. Cavs by nature supports auto-differentiation. Given a vertex function F it
derives O.F following the auto-differentiation rules: for each math expression such as s; = op(s;)
in F, Cavs generates a corresponded backward expression in O.F as Vs, = grad_op(Vs;, s, Si).
For the four proposed operators, with the memory management strategy described above, we note
scatter is the backward operator of gather in the sense that if gather collects inputs from
gatherBuffer previously written by scatter at the forward pass, a scatter needs to be performed
to write the gradients to the gatherBuffer for its dependent vertices to gather at the backward
pass. Hence, for an expression like s; = gather(child_idx) in F, Cavs will generate a backward
expression scatter(Vs;) in OF. Similarly, the gradient operator of scatter is gather. The same
auto-differentiation rule applies for push and pull as well.



Once users define the vertex function F and launch the execution, the Cavs scheduler arranges the
evaluation of F over the input graphs to perform the backpropagation.

Backpropagation. Cavs performs backpropagation [19] as follows. For a sample z; with its input
graph G;, the scheduler starts the forward pass from the input vertices of G;, and proceeds following
the direction indicated by the edges in G;: at each sub-step, the scheduler figures out the next activated
vertex in G;, and evaluates F at this vertex following the symbolic programs in F. It then marks
this vertex as evaluated, and proceeds with the next activated vertex until reaching a terminal vertex
(e.g. the loss function). A vertex of G is activated if and only if all its dependent vertices have
been evaluated. The backward pass is continued right after the forward. The scheduler first resets
the status of all vertices as not evaluated, then scans the graph in a reverse direction, starting from
the ending point of the forward pass. It similarly figures out the next activated vertex, but applies
another function 0.F, which is the backward function of F and automatically derived by Cavs via
auto-differentiation, until all vertices have been evaluated in backward. To train a NN to convergence,
the above process has to be iterated by the scheduler over all samples {x;}¥, and their associated
graphs {G; }}¥,, for many epochs. Instead a sequential execution, Cavs designs a batching policy to
perform batched computation, considering the fact that evaluating a set of same arithmetic operations
together is significantly faster than the sequential evaluation of each of them.

4 Evaluation

Environment. We perform all experiments in this paper on a single machine with an NVIDIA Titan
X (GM200) GPU, a 16-core (32 threads) CPU, and CUDA toolkit 8.0 and cuDNN v6 installed. As
modern DL models are mostly trained using GPUs, we focus our evaluation on GPUs, but note Cavs’
design and implementation do not reply on a specific type of device. We borrow the implementations
of most mathematical operators from TensorFlow v1.2, while we implement the four proposed
operators and other system modules by ourselves. We mainly compare Cavs to TensorFlow v1.2 [[1]
with XLA [15] and its variant Fold [25]], as well as DyNet v2.0 [29] with autobatching [30], as they
have reported better performance than other frameworks [12} 144] on dynamic NNs. We focus on
metrics for system performance, e.g. the average time to scan one epoch of data. Cavs produces
exactly the same numerical results with other frameworks, hence the same per-epoch convergence.

Models and dataset. We experiment on the following models with increasing difficulty to batch:
(a) Fixed-LSTM language model (LM): a static sequence LSTM with fixed steps for language
modeling 36,37, 150]. We train it using the PTB dataset [41] that contains over 10K different words.
We set the number of steps as 64, i.e. at each iteration of training, the model takes a 64-word sentence
from the training corpus, and predicts the next word of each word therein. Obviously, the computation
can be by nature batched easily, as each sentence has exactly the same size. (b) Var-LSTM LM: that
accepts variable-length inputs. At each iteration the model takes a batch of natural sentences with
different length from PTB, and predicts the next words; (c) Tree-FC: the benchmarking model used
in [25]] with a single fully-connected layer as its cell function. Following the same setting in [25]],
we train it over synthetic samples generated by their code [40] — each sample is associated with a
complete binary tree with 256 leaves (therefore 511 vertices per graph); (d) Tree-LSTM: a family
of dynamic NNs widely adopted for text analysis [24} 145]. We implement the binary child-sum
Tree-LSTM model in [38]], and train it as a sentiment classifier using Stanford sentiment treebank
(SST) dataset [34], which contains 8544 training sentences in which the longest sentence has 54
words. Each sentence is associated with a human annotated grammar tree.
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Figure 2: Comparing five systems in terms of the averaged time to finish one epoch of training (lower is better)

on four models: Fixed-LSTM, Var-LSTM, Tree-FC and Tree-LSTM. In (a)-(d) we fix the hidden size h and
vary the batch size bs, while in (e)-(h) we fix bs and vary h.



We first verify the viability of our design on the easiest-to-batch case: Fixed-LSTM language model.
We compare Cavs to the following three strong baselines: (1) CuDNN [7]]: a CuDNN-based fixed-
step sequence LSTM, which is highly optimized by NVIDIA using handcrafted kernels and stands
as the best performed implementation on NVIDIA GPUs; (2) TF: the official implementation of
Fixed-LSTM LM in TensorFlow repository [39] based on static declaration; (3) DyNet: we implement
a 64-step LSTM in DyNet based on dynamic declaration — we declare a dataflow graph per sample,
and train with the autobatching [30] enabled; (4) Cavs with batching policy, and all input samples
have a same input graph — a 64-node chain. We train the model to converge, and report the average
time per epoch in Figure 2a)(e), where in (a) we fix the hidden size h of the LSTM unit as 512 and
vary the batch size bs, and in (e) we fix bs = 64 and vary h. Empirically, CuDNN performs best in
all cases, but note it is highly inflexible. Cavs performs slightly better than TF in various settings,
verifying that our system has little overhead dealing with fully static graphs, though it is specialized
for dynamic ones. We also conclude from Figure [2] that batching is essential for GPU-based DL.:
bs = 128 is nearly one order of magnitude faster than bs = 1 regardless of used frameworks. For
Cavs, the batching policy is 1.7x, 3.8x, 7.0x, 12x, 15x, 25x, 36x faster than the serial policy at
bs = 2,4,8,16,32,64, 128, respectively. Next, we experiment with Var-LSTM, the most commonly
used RNN for variable-length sequences. We compare the following three implementations (CuDNN-
based LSTM cannot handle variable-length inputs): (1) TF: an official TensorFlow implementation
based on the dynamic unroll approach; (2) DyNet: an official implementation from DyNet benchmark
repository based on dynamic declaration [[L1]; (3) Cavs: where each input sentence is associated
with a chain graph that has number of vertices equal to the number of words. We vary h and bs,
and report the results in Figure 2(b)(f), respectively. Although all three systems perform batched
computation in different ways, Cavs is constantly 2-3 times faster than TF, and outperforms DyNet
by a large margin. Compared to TF, Cavs saves computational resources. TF dynamically unrolls the
LSTM unit according to the longest sentence in the current batch, but it cannot prevent unnecessary
computation for those sentences that are shorter than the longest one.

We then turn to Tree-FC, a dynamic model for benchmarking. Since vanilla TensorFlow is unable to
batch its computation, we compare Cavs to (1) DyNet and (2) Fold, a specialized library built upon
TensorFlow for dynamic NNs, with a depth-based dynamic batching strategy. To enable the batching,
it however needs to preprocess the input graphs, translate them into intermediate representations
and pass them to lower-level TensorFlow control flow engine for execution. We report the results in
Figure[2c)(g) with varying bs and h, respectively. For all systems, we allocate a single CPU thread
for graph preprocessing or construction. Cavs shows at least an order of magnitude speedups than
Fold and DyNet at (h < 512). Because the size of the synthetic trees is large, one major advantage
of Cavs over them is the alleviation of substantial graph preprocessing/construction overhead. With a
single CPU thread, Fold takes even more time on graph preprocessing than computation.

Finally, we compare three frameworks on Tree-LSTM in Figure 2(d)(h): Cavs is 8-10x faster than
Fold, and consistently outperforms DyNet. One difference in this experiment is that we allocate
as many CPU threads as possible (32 on our machine) to accelerate graph preprocessing for Fold,
otherwise it will take much longer time. Further, we note DyNet performs much better here than
on Tree-FC, as the size of the input graphs in SST (maximally 52 leaves) is much smaller than the
synthetic ones (256 leaves each) in Tree-FC experiments. We observe DyNet needs more time on
graph construction for large input graphs, and DyNet’s dynamic batching is less effective on larger
input graphs, as it has to perform frequent memory checks to support its dynamic batching.

Others. Despite system advantages, we also try to investigate whether Cavs, as an interface, simplifies
user programs (though we do not claim as a contribution). We compare Cavs to Fold and DyNet in
terms of the lines of code (LoC) needed to create a few notable dynamic NNs, including Var-LSTM,
Tree-LSTM, and multi-layer sequence LSTM, with Python as the host language. If only for model
declaration, Fold in general has 3.5x more LoC than Cavs, while DyNet has slightly more LoC than
Cavs because of the function to repeatedly declare graphs.

5 Conclusion

We present Cavs as a vertex-centric programming interface as well as an efficient system for dynamic
deep learning. Cavs represents a dynamic NN structure as static vertex functions and dynamic input
graphs. It provides four novel APIs to allow users to easily program these types of NNs. With
designed scheduling policy, memory management strategy, and graph execution optimizations, Cavs
avoids substantial graph construction overhead suffered by dynamic declaration, and reports new
state-of-the-art system performance for various notable dynamic NN architectures.
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