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Abstract

Large-scale distributed training requires significant communication bandwidth for
gradient exchange. The intensive gradient communication limits the scalability of
multi-node training, and requires expensive high-bandwidth network infrastructure.
The situation gets even worse with distributed training on mobile devices (federated
learning), which suffers from higher latency, lower throughput, intermittent poor
connections. In this paper, we propose Deep Gradient Compression that can reduce
the communication bandwidth by two orders of magnitude. We proposed four
techniques that also preserves the accuracy: momentum correction, local gradient
clipping, momentum factor masking, and warm-up training. We extensively applied
Deep Gradient Compression to many types of machine learning tasks including
image classification, speech recognition, and language modeling with multiple
datasets including Cifar10, ImageNet, Penn Treebank, and Librispeech Corpus. On
these scenarios, Deep Gradient Compression achieved a compression ratio from
270× to 600× without losing accuracy, cutting the gradient size of ResNet-50
from 97MB to 0.35MB, DeepSpeech from 488MB to 0.74MB. Deep gradient
compression enables large-scale distributed training on inexpensive commodity
1Gbps Ethernet and facilitates distributed training on mobile.

1 Introduction

Large-scale distributed training improves the productivity of training deeper and larger models
[1–4]. Synchronous stochastic gradient descent (SGD) is widely used for distributed training. By
increasing the number of training nodes and taking advantage of data parallelism, the total computation
time of the forward-backward passes on the same size training data can be dramatically reduced.
However, gradient exchange is costly and dwarfs the savings of computation time [5, 6], especially for
recurrent neural networks (RNN) where the computation-to-communication ratio is low. Therefore,
the network bandwidth becomes a significant bottleneck for scaling up distributed training. This
bandwidth problem gets even worse when distributed training is performed on mobile devices (such
as federated learning [7, 8]). Training on mobile devices is appealing due to better privacy and
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Figure 1: Deep Gradient Compression reduces the communication bandwidth, improves the scalability
and speed up for distributed training.

better personalization [9], but a critical problem is that those mobile devices suffer from even lower
bandwidth and intermittent Internet connection.

There have been many approaches to overcome the communication bottleneck in distributed training.
Asynchronous SGD accelerates the training by removing gradient synchronization and updating
parameters immediately once a node has completed back-propagation [5, 10, 11]. Quantizing the
gradients to low-precision values are also extensively studied [6, 12, 13]. Aji and Heafield [14]
proposed a gradient sparsification method to effectively saves 99% of gradients exchange while
incurring 0.3% loss of BLEU score on a machine translation task.

Deep Gradient Compression (DGC) solves the communication bandwidth problem by compressing
the gradients which effectively reduces the communication bandwidth. DGC has several benefits.
First, DGC can save communication time, achieve better speedup and scalability. Second, DGC
reduces the infrastructure cost not having to buy expensive switches (e.g. Infiniband). Third, DGC
helps federated learning on mobile devices.

We provide several techniques to ensure that DGC incurs no loss of accuracy. We propose momentum
correction and local gradient clipping on top of the gradient sparsification to maintain model
performance. Furthermore, we propose momentum factor masking and warmup training to overcome
the staleness problem caused by reduced communication.

We empirically verified Deep Gradient Compression on a wide range of tasks, models, and datasets:
CNN for image classification (with Cifar10 and ImageNet), RNN for language modeling (with Penn
Treebank) and speech recognition (with Librispeech Corpus). We showed that up to 600× gradient
size reduction can be achieved on all these models without any accuracy degradation, which is an
order of magnitude higher than previous work.

2 Deep Gradient Compression

2.1 Gradient Sparsification

We reduce the communication bandwidth by sending only the important gradients (sparse update).
We use magnitude as a simple heuristics for importance: only gradients larger than a threshold are
transmitted. To avoid loosing information, we accumulate the rest of the gradients locally. Eventually,
these gradients become large enough to be transmitted. Thus, we send the large gradients immediately
but eventually send all of the gradients over time. The method is shown in Algorithm 1.

The insight is that local gradient accumulation is equivalent to increasing the batch size over time. Let
F (w) be the loss function which we want to optimize, and Synchronous Distributed SGD performs
the following update with N training nodes in total:

F (w) =
1

|χ|
∑
x∈χ

f(x,w), wt+1 = wt − η
1

Nb

N∑
k=0

∑
x∈Bk,t

Of(x,wt) (1)

where χ is the training dataset, w are the weights of a network, f(x,w) is the loss computed from
samples x ∈ χ, η is the learning rate, N is the number of training nodes, and Bk,t for 0 ≤ k < N is
a sequence of N minibatches sampled from χ at iteration t, each of size b.
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Algorithm 1 Gradient Sparsification on node k

Input: dataset χ
Input: minibatch size b per node
Input: the number of nodes N
Input: optimization function SGD
Input: init parameters w = {w[0], w[1], · · · , w[M ]}
1: Gk ← 0
2: for t = 0, 1, · · · do
3: Gk

t ← Gk
t−1

4: for i = 1, · · · , b do
5: Sample data x from χ
6: Gk

t ← Gk
t + 1

Nb
Of (x;wt)

7: end for
8: for j = 0, · · · ,M do
9: Select threshold: thr ← s% of

∣∣Gk
t [j]
∣∣

10: Mask ←
∣∣Gk

t [j]
∣∣ > thr

11: G̃k
t [j]← Gk

t [j]�Mask
12: Gk

t [j]← Gk
t [j]� ¬Mask

13: end for
14: All-reduce Gk

t : Gt ←
∑N

k=1 sparse(G̃
k
t )

15: wt+1 ← SGD (wt, Gt)
16: end for
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Figure 2: Gradient Sparsification with
momentum correction

Consider the weight value w(i) of i-th position in w. After T iterations, we have

w
(i)
t+T = w

(i)
t − ηT ·

1

NbT

N∑
k=0

T−1∑
τ=0

∑
x∈Bk,t+τ

O(i)f(x,wt+τ )

 (2)

Equation 2 shows that local gradient accumulation can be considered as increasing the batch size from
Nb to NbT (the second summation over τ ), where T is the length of the update interval between
two iterations at which the gradient of w(i) is sent. Learning rate scaling [15] is commonly used
technique to deal with large minibatch. This is automatically satisfied in Equation 2 where the T in
the learning rate ηT and batch size NbT are canceled out.

2.2 Improving the Local Gradient Accumulation

Without care, sparse update will greatly harm convergence when sparsity is extremely high (99.9%).
For example, Algorithm 1 incurred more than 1% loss of accuracy on Cifar10 dataset. We find
momentum correction and local gradient clipping can mitigate this problem.

Momentum Correction Momentum SGD is widely used in place of vanilla SGD. Distributed
training with vanilla momentum SGD on N training nodes follows [16],

ut = mut−1 +

N∑
k=1

(Ok,t) , wt+1 = wt − ηut (3)

where m is the momentum, N is the number of training nodes, and Ok,t = 1
Nb

∑
x∈Bk,t Of(x,wt).

However, Algorithm 1 doesn’t directly apply to SGD with the momentum term, since it ignores the
discounting factor between the sparse update interval T . When the gradient sparsity is high, the
update interval T dramatically increases, and thus the significant momentum effect will harm the
model performance. To avoid this error, we need momentum correction on top of Algorithm 1 to
make sure the sparse update is equivalent to the dense update as in Equation (3).

If we regard the velocity ut in Equation (3) as "gradient", the second term of Equation (3) can be
considered as the vanilla SGD for the "gradient" ut. The local gradient accumulation is proved to be
effective for the vanilla SGD in Section 2.1. Therefore, we can locally accumulate the velocity ut
instead of the real gradient Ok,t to migrate Algorithm 1 to approach Equation (3):

uk,t = muk,t−1 + Ok,t, vk,t = vk,t−1 + uk,t, wt+1 = wt − η
N∑
k=1

sparse (vk,t) (4)
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where the first two terms are the corrected local gradient accumulation, and the accumulation result
vk,t is used for the subsequent sparsification and communication. We refer to this migration as the
momentum correction. Beyond the vanilla momentum SGD, we also look into Nesterov in Appendix
B.1. The momentum correction for Nesterov is similar to momentum SGD, as shown in Figure 2(a)
and 2(b). The Algorithm 1 with momentum correction is provided in Appendix B.

Local Gradient Clipping Gradient clipping is widely adopted to avoid the exploding gradient
problem [17]. The method proposed by Pascanu et al. [18] rescales the gradients whenever the sum of
their L2-norms exceeds a threshold. This step is conventionally executed after gradient aggregation
from all nodes. Because we accumulate gradients over iterations on each node independently, we
perform gradient clipping locally before adding the current gradient Gt to previous accumulation
(Gt−1 in Algorithm 1 and Vt−1, Ut−1 in Figure 2(a), 2(b)). We scale the threshold by N−1/2, the
current node’s fraction of the global threshold if all N nodes had identical gradient distributions.

2.3 Overcoming the Staleness Effect

Because we delay the update of small gradients, when these updates do occur, they are outdated or
stale. Staleness can slow down convergence and degrade model performance. We mitigate staleness
with momentum factor masking and warm-up training.

Momentum Factor Masking Mitliagkas et al. [19] discussed the staleness caused by asynchrony
and attributed it to a term described as implicit momentum. Inspired by their work, we introduce
momentum factor masking, to alleviate staleness. Instead of searching for a new momentum coefficient
as suggested in Mitliagkas et al. [19], we simply apply the same mask to both the gradients Gt and
the momentum factor Vt in Figure 2(a) and 2(b):

Vt[j]← Vt[j]� ¬Mask

This mask stops the momentum for delayed gradients, preventing the stale momentum from carrying
the weights in the wrong direction.

Warm-up Training In the early stages of training, the network is changing rapidly, and gradients
are more diverse and aggressive. Sparsifying gradients limits the range of variation of the model,
and thus prolongs the period of drastic gradients. Meanwhile, the remaining aggressive gradients
from the early stage are accumulated before being chosen for the next update, and therefore they
may outweigh the latest gradients and misguide the optimization direction. The warm-up training
method introduced in large minibatch training [15] is helpful. During the warm-up period, we use
a less aggressive learning rate, to slow down the changing speed of the neural network at the start
of training, and also less aggressive gradient sparsity, to reduce the number of extreme gradients
being delayed. Instead of linearly ramping up the learning rate during the first several epochs, we
exponentially increase the gradient sparsity from a relatively small value to the final value.

3 Experiments

We validate our approach on three types of machine learning tasks: image classification with ResNet
and AlexNet [20, 21] on Cifar10 [22] and ImageNet [23], language modeling with 2-layer LSTM
[24, 25] on Penn Treebank dataset [26, 27], and speech recognition [28] with 5-layer LSTM on AN4
[29] and 7-layer GRU on Librispeech 1000h corpus [30].

We first examined deep gradient compression on image classification task. Figure 3(a) and 3(b) are
the Top-1 accuracy and training loss of ResNet-110 on Cifar10 with 4 nodes. The sparsity of the
gradient is 99.9% (only 0.1% is non-zero). The learning curve of Gradient Dropping [14] (red) is
worse than the baseline due to gradient staleness. With momentum correction (yellow), the learning
curve converges slightly faster, and accuracy is much closer to the baseline. Adding momentum factor
masking and warm-up training techniques (blue), gradient staleness is eliminated and the learning
curve closely follows the baseline.

Table 1 shows the results of AlexNet and ResNet-50 training on ImageNet with 4 nodes. We compared
the gradient compression ratio with Terngrad [6] on AlexNet (ResNet is not studied in [6]). Deep
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Figure 3: Learning curves when gradient sparsity is 99.9%.

Table 1: Comparison of gradient compression ratio on ImageNet Dataset

Model Training Method Top-1 Accuracy Top-5 Accuracy Gradient Size
Compression

Ratio
Baseline 58.17% 80.19% 232.56 MB 1 ×

TernGrad [6]
57.28% 80.23%

29.18 MB
2

8 ×AlexNet (-0.89%) (+0.04%)
Deep Gradient 58.20% 80.20%

0.39 MB
3

597 ×Compression (+0.03%) (+0.01%)
Baseline 75.96 92.91% 97.49 MB 1 ×

ResNet-50 Deep Gradient 76.15 92.97%
0.35 MB 277 ×Compression (+0.19%) (+0.06%)

Gradient Compression gives 75× better compression than [6] with no loss of accuracy. For ResNet-50,
the compression ratio is slightly lower (277× vs. 597×) with a slight increase in accuracy.

For language modeling, Table 2 shows the perplexity of a 2-layer LSTM trained on the PTB dataset
using 4 nodes when 99.9% of the gradient exchange is removed. Deep Gradient Compression
compresses the gradient by 462 × with a slight reduction in perplexity. For speech recognition,
Figure 3(c) and 3(d) show the word error rate (WER) and training loss curve of 5-layer LSTM
on AN4 Dataset with 4 nodes when the gradient sparsity is 99.9%. The learning curves show
the same improvement acquired from techniques in Deep Gradient Compression as for the image
network. Table 2 shows word error rate (WER) performance on LibriSpeech test dataset, where
test-clean contains clean speech and test-other noisy speech. The model trained with Deep Gradient
Compression gains better recognition ability on both clean and noisy speech, even when gradients
size is compressed by 608×.

3The gradient of last fully-connected layer of Alexnet is 32-bit float. [6]
3We only transmit 16-bit index distances and 32-bit values of non-zeros in flattened gradients.
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Table 2: Training results of language modeling and speech recognition with 4 nodes

Task Language Modeling on PTB Speech Recognition on LibriSpeech corpus
Training

Perplexity
Gradient Compression Word Error Rate (WER) Gradient Compression

Method Size Ratio test-clean test-other Size Ratio
Baseline 72.30 194.68 MB 1 × 9.45% 27.07% 488.08 MB 1 ×
Deep Gradient 72.24 0.42 MB 462 × 9.06% 27.04% 0.74 MB 608 ×
Compression (-0.06) (-0.39%) (-0.03%)
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Figure 4: The total time consumption speedup compared to one training node when the number of
nodes increases. Each node has 4 NVIDIA Titan XP GPUs and one PCI switch.

4 System Implementation and Performance Analysis

One critical step to implement Deep Gradient Compression is gradient top-k selection. Given the
target sparsity ratio of 99.9%, picking the top 0.1% largest over millions of weights can be slow (the
complexity is O(nlog(n · s)), where s is the expected sparsity of gradients). We use sampling to
reduce top-k selection time. We sample 0.1% to 1% of the gradients and sort this sample to estimate
the threshold for the entire population. If the number of gradients exceeding the threshold is far
more than expected, a precise threshold is calculated from already-selected gradients. Hierarchically
calculating the threshold significantly reduces sorting time.

We use the performance model proposed in Wen et al. [6] to perform the scalability analysis,
combining the lightweight profiling on single training node with the analytical communication
modeling. With the all-reduce communication model [31, 32], the density of sparse data doubles
at every aggregation step in the worst case. However, even considering this effect, Deep Gradient
Compression still significantly reduces the network communication time, as implied in Figure 4.

Figure 4 shows the speedup of multi-node training compared with single-node training. Conventional
training achieves much worse speedup with 1Gbps (Figure 4(a)) than 10Gbps Ethernet (Figure 4(b)).
Nonetheless, Deep Gradient Compression enables the training with 1Gbps Ethernet to be competitive
with conventional training with 10Gbps Ethernet. For instance, when training AlexNet with 64 nodes,
conventional training only achieves about 30× speedup with 10Gbps Ethernet [33], while with DGC,
more than 40× speedup is achieved with only 1Gbps Ethernet. From the comparison of Figure 4(a)
and 4(b), Deep Gradient Compression benefits even more when the communication-to-computation
ratio of the model is higher and the network bandwidth is lower.

5 Conclusion

Deep Gradient Compression compresses the gradient by 270-600× for a wide range of CNNs,
RNNs, and LSTMs. To achieve this compression without slowing convergence, DGC employs
momentum correction, local gradient clipping, momentum factor masking, and warm-up training.
Our implementation uses hierarchical threshold selection to speed up gradient sparsification. Deep
Gradient Compression improves the scalability of distributed training with inexpensive, commodity
networking infrastructure.
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A Synchronous Distributed Stochastic Gradient Descent

In practice, each training node performs forward inference and backpropagation on different batches
sampled from training dataset with the same network model. The gradients calculated by all nodes
are summed up and broadcast to every node to optimize their models. By this synchronization step,
models on different nodes are always the same during the training. The aggregation step can be
achieved in two ways. One is using the parameter as the intermediary which store the parameters
among several servers[10]. The nodes push the gradients to the servers while servers are waiting
for gradients from all nodes. Once gradients are all sent, the servers update the parameters and then
nodes pull the latest parameters from the servers. The other is done by an all-reduce operation [15]
among all nodes as shown in Algorithm 2 and Figure 5. In this paper, we adopt the latter approach by
default.
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Figure 5: Distributed Synchronous SGD

Algorithm 2 Distributed Synchronous SGD on
node k
Input: Dataset χ
Input: minibatch size b per node
Input: the number of nodes N
Input: Optimization Function SGD
Input: Init parameters w = {w[0], · · · , w[M ]}

1: for t = 0, 1, · · · do
2: Gkt ← 0
3: for i = 1, · · · , B do
4: Sample data x from χ
5: Gkt ← Gkt +

1
NbOf (x;wt)

6: end for
7: All-reduce Gkt : Gt ←

∑N
k=1G

k
t

8: wt+1 ← SGD (wt, Gt)
9: end for
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B Gradient sparsification with momentum correction

Algorithm 3 Gradient sparsification with momen-
tum correction on node k
Input: dataset χ
Input: minibatch size b per node
Input: momentum m
Input: the number of nodes N
Input: optimization function momentum_SGD
Input: initial parameters w = {w[0], · · · , w[M ]}
1: Uk ← 0, V k ← 0
2: for t = 0, 1, · · · do
3: Gk

t ← 0
4: for i = 1, · · · , b do
5: Sample data x from χ
6: Gk

t ← Gk
t + 1

Nb
Of (x; θt)

7: end for
8: V k

t ← V k
t−1 +Gk

t

9: Uk
t ← Uk

t−1 + V k
t

10: V k
t ← m · V k

t

11: for j = 0, · · · ,M do
12: thr ← s% of

∣∣Uk
t [j]

∣∣
13: Mask ←

∣∣Uk
t [j]

∣∣ > thr

14: G̃k
t [j]← Uk

t [j]�Mask
15: Uk

t [j]← Uk
t [j]� ¬Mask

16: end for
17: All-reduce: Gt ←

∑N
k=1 sparse(G̃

k
t )

18: θt+1 ← momentum_SGD (θt, Gt)
19: end for

Algorithm 4 Gradient sparsification with Nesterov mo-
mentum correction on node k
Input: dataset χ
Input: minibatch size b per node
Input: momentum m
Input: the number of nodes N
Input: optimization function Nesterov_momentum_SGD
Input: initial parameters w = {w[0], · · · , w[M ]}
1: Uk ← 0, V k ← 0
2: for t = 0, 1, · · · do
3: Gk ← 0
4: for i = 1, · · · , b do
5: Sample data x from χ
6: Gk

t ← Gk
t + 1

Nb
Of (x; θt)

7: end for
8: V k

t ← m ·
(
V k
t−1 +Gk

t

)
9: Uk

t ← Uk
t−1 + V k

t +Gk
t

10: for j = 0, · · · ,M do
11: thr ← s% of

∣∣Uk
t [j]

∣∣
12: Mask ←

∣∣Uk
t [j]

∣∣ > thr

13: G̃k
t [j]← Uk

t [j]�Mask
14: Uk

t [j]← Uk
t [j]� ¬Mask

15: end for
16: All-reduce: Gt ←

∑N
k=1 sparse(G̃

k
t )

17: θt+1 ← Nesterov_momentum_SGD (θt, Gt)
18: end for

B.1 Nestrov Momentum SGD

The conventional update rule for Nesterov momentum SGD [34] follows,

ut+1 = mut +

N∑
k=1

Ok,t, wt+1 = wt − η

(
m · ut+1 +

N∑
k=1

Ok,t

)
(5)

where m is the momentum, N is the number of training nodes, and Ok,t = 1
Nb

∑
x∈Bk,t Of(x,wt).

Before momentum correction, the sparse update follows,

vk,t+1 = vk,t + Ok,t, ut+1 = mut +

N∑
k=1

sparse (vk,t+1) , wt+1 = wt − ηut+1 (6)

where the first term is the local gradient accumulation. Once the accumulation result vk,t is larger
than a threshold, it will pass hard thresholding in the sparse () function, and gets sent over the
network in the second term.

After momentum correction sharing the same methodology with Equation (4), it becomes,

uk,t+1 = muk,t+Ok,t, vk,t+1 = vk,t+(m · uk,t+1 + Ok,t) , wt+1 = wt−η
N∑
k=1

sparse (vk,t+1)

(7)
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