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Abstract

Data cleaning and feature engineering are both common practices when developing
machine learning (ML) models. However, developers are not always aware of best
practices for preparing or transforming data for a given model type, which can lead
to suboptimal representations of input features. To address this issue, we introduce
the data linter, a new class of ML tool that automatically inspects ML data sets
to 1) identify potential issues in the data and 2) suggest potentially useful feature
transforms, for a given model type. As with traditional code linting, data linting
automatically identifies potential issues or inefficiencies; codifies best practices and
educates end-users about these practices through tool use; and can lead to quality
improvements. In this paper, we provide a detailed description of data linting,
describe our initial implementation of a data linter for deep neural networks, and
report results suggesting the utility of using a data linter during ML model design.

1 Introduction: Lints and Data Lints

The concept of a lint originates in the field of software engineering, where it refers to a potential defect
in the expression of a program, or a deviation from accepted practices [10]. Canonical examples of
code lint include unused code, the use of bug-prone constructs or idioms, and stylistic patterns that
do not conform to a community-accepted standard. Importantly, a linter warning does not necessarily
indicate an error exists. However, it does reduce the cognitive burden of consistently applying best
practices, and of identifying potential bugs in the code.

As machine learning (ML) systems have become widely deployed, it has become clear that ML data
sets are an area in which errors and bugs can have far reaching consequences on system behavior [16].
Indeed, ML data takes on the role of ML code in many respects, which makes testing, verification,
and data cleaning critical tasks.

A large number of tests for ML data have been developed [4] and are critical for production systems.
We propose that many data issues can be identified with lightweight automation—at least as potential
issues that warrant further investigation. Some examples include:

◦ Numerical features on widely differing scales.

◦ Specific values ascribed special meaning (e.g., -9999 to represent missing data).

◦ Malformed values of special string types, such as dates.

This list is naturally non-exhaustive, but these problems are all too familiar to practitioners working
with real data, especially when a human is the source of the data.

Catching such problems in ML data sets is commonly performed as part of cleaning which, even
when automated, is a time-consuming and error-prone process of repeated inspection and correction
[5].
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To alleviate this issue, we propose a general-purpose tool for this task: a data linter. The data
linter is a tool that analyzes a user’s training data and suggests ways features can be transformed
to improve model quality, for a specific model type. To identify potential issues, the data linter
inspects the training data’s summary statistics, examines individual examples, and considers the
names developers give to their features. For each potential issue identified, the data linter produces a
warning, a recommendation for how to improve the feature’s representation, and a concrete example
of the lint taken directly from the data.

Because this is a new class of tool in the generic ML toolkit, this paper makes a number of con-
tributions. We introduce and define the concept of data linting, and describe a taxonomy of data
lint that focuses on deep neural networks (DNNs) as a target model type. We present the high-level
architecture and implementation of our data linter tool, noting that the design allows third parties to
add new data lint detectors. Finally, we provide an empirical evaluation, reporting results of applying
this tool to a set of 600 publicly available data sets from Kaggle, in addition to several proprietary
data sets internal to Google. Our results suggest that the data linter can be valuable to developers who
are new to machine learning, as both an educational tool and as a means to improve model quality.

2 Related Work: Code Linters, Data Cleaning, and Automated ML

The concept of a data linter builds upon work in code linters; data cleaning and data validation; and
automated model construction and automated feature engineering.

Code linters (e.g., Pylint [14], ESLint [7]) inspect code and output warnings and recommendations for
software developers. These recommendations are intended to help make the code more readable by
humans, and to prevent the introduction of bugs through the use of problematic idioms. Importantly,
“linty” code and “non-linty” code can be functionally equivalent to the interpreter or compiler. In
these cases, the only difference is that lint-free code conforms to a set of established best practices,
which are intended to make the code more human-interpretable and/or consistent.

A data linter is very much in the spirit of code linters. Some feature representations are very natural
to people, but suboptimal to specific ML models. For instance, a person might prefer to use the
values 0-360 to represent an angle in degrees, but a machine learning model might learn better using
a bucketized or sine-transformed value. Crucially, the data is valid, in that the model will accept the
inputs, but it is not in a representation the model can best learn from. The data linter identifies such
potential issues.

Data cleaning and validation have long histories in the domains of databases, data warehousing,
data science, and machine learning, among many others. Data cleaning includes a diverse set of
activities, including normalizing the data (e.g., correcting misspellings), removing data with illegal
values (e.g., NaN values), identifying outliers, and automatically correcting problematic instances
(see [5, 6, 15] for surveys of the space). Data validation ensures that data conforms to a schema
or a set of constraints, and is becoming a standard tool in ML pipelines [2, 13]. For example, data
validation can ensure that numerical values fall within a specific range, or that string values are
limited to a prescribed set of values. These processes can be fully automated [2, 12], or include a
human-in-the-loop [3, 11] for increased flexibility.

In the context of ML, data validation is essential to ensure that an ML model will function correctly
[2]. Additionally, data cleaning can increase the quality of the trained model (e.g., by fixing incorrect
features/labels). However, data can be both cleaned and validated, but still have a suboptimal rep-
resentation for a given class of model. For example, although a linear classifier can accept numeric
features in any range, it may yield higher quality results if all of the inputs are normalized with
respect to each other.

Automated model construction, including automated feature engineering, has the goal of minimizing
the amount of effort required to produce a high quality model (e.g., [8, 17]). This is an active research
area producing promising results, but it is still an evolving area. For those who must manually define
models, the data linter can provide useful advice and assistance for feature engineering.

3 Data Linter Design and Implementation

As mentioned in the Introduction, we define a data linter as a tool that analyzes training data features,
with respect to a specific model type, and provides recommendations for how individual features
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can be transformed to increase the likelihood that the model can learn from them. In this context, a
data lint is a data- and model-specific inspection rule and recommendation. For example, a “date-
time” data lint examines data to see whether it is likely a date or time encoded as a string. If so, it
recommends conversion to a numeric timestamp.

Our implementation of a data linter includes the following components:

◦ A user-extensible collection of LintDetectors. A LintDetector corresponds to a specific issue to
search for, for a given model type. LintDetectors thus include the logic to detect the problem,
as well as code to collect sample instances to present to the user later, to help them understand
and debug identified issues. In the next section, we describe the different types of information we
found useful to implement LintDetectors.

◦ A DataLinter, or the engine that applies the LintDetectors to a data set.

◦ A LintExplorer, which takes the output of the DataLinter and presents it to the user. For every lint
detected, a detailed explanation of the issue (including suggested fixes) is presented, along with
sample data illustrating the issue in the user’s data set.

◦ Data summarization functions to calculate summary statistics over the data set, for LintDetectors
that need summary statistics to operate.

Creating a new LintDetector amounts to subclassing the LintDetector class and implementing a lint
method that accepts a collection of data instances and returns a LintResult that records what features
triggered warnings, along with sample instances.

3.1 DataLinter Implementation for DNNs

Our implementation of the DataLinter for DNNs leverages the Apache Beam framework [1] to load
the dataset and run each LintDetector. Each LintDetector runs independently to afford a degree of
scalability.

Since we envision using the DataLinter as part of a larger ML pipeline, it exists as a Python library
with an optional standalone frontend. When integrated into a larger system, data linting most logically
occurs after both the data ingestion and data pre-processing stages.

To identify potential problems, we found it useful to make the following types of information avail-
able to individual LintDetectors: 1) summary statistics calculated over the entire data set (e.g., to
identify outliers), 2) individual data instances (e.g., to identify long strings), and 3) feature names
and metadata.

To reduce computational burden, we use pre-computed statistics and, where possible, heuristics based
on them. As would be expected, LintDetectors that scan all examples (e.g., to detect duplicates or
enumerations) run several orders of magnitude more slowly than those that simply observe histogram
summaries of data (i.e. tailed distribution, uncommon sign/list length). As we note in section 5,
the prototype implementation can be slowed down significantly by the presence (but, notably, not
quantity) of such LintDetectors. Fortunately, improving performance is an issue of implementation,
not design. For instance, duplicate/enum detection can be made to run in logarithmic rather than
linear time and space simply by replacing hashing with the HyperLogLog algorithm [9].

The feature name can be useful to identify data types such as zip codes or geospatial data. While
it can be difficult to discern whether numeric data is latitudinal or longitudinal through inspecting
numerical values alone, it is quite likely that the feature name includes a “lat” or “lon” string. The
same is true of zip codes, as we found in our evaluation of Kaggle data sets.

Our initial prototype of the DataLinter is available under a free and open source license 2.

4 Data Lints

In this section, we detail a number of specific lints derived from common errors observed within
Google and through inspection of publicly available data sets. These lints can be roughly classified
into three high-level categories: miscodings of data, outliers, and packaging errors. Note that while
we consider data lints to be tied to specific model types (since feature engineering recommendations

2https://github.com/brain-research/data-linter
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are generally model-dependent), we acknowledge that some data lints are more broadly applicable
(e.g., unnormalized features). This observation suggests the potential for reuse of data lint detectors
across model types.

4.1 Miscoding Lints

Miscoding data linters attempt to identify data that should be transformed to improve the likelihood
that a model can learn from the data. While some model types like Random Forests may be robust
to some of these lints, many of the lints described below are applicable to a range of model types,
including neural networks, linear models, and SVMs.

In our work, we developed the following miscoding data lint rules:

◦ Number as string: A number is encoded as a string. Consider whether it should be represented as
a number.

◦ Enum as real: An enum (a categorical value) is encoded as a real number. Consider converting to
an integer and using an embedding or one-hot vector.

◦ Tokenizable string: A feature has very long strings that are likely all unique. Consider tokenizing
and using word embeddings.

◦ Circular domain as linear: A circular feature was identified (e.g., latitude, longitude, day of the
week). Consider bucketing the value or transforming it via a trigonometric function.

◦ Date/time as a string: Consider encoding as a timestamp.

◦ Zip code as number: A zip code should probably be bucketed or represented as an embedding.

◦ Integer as float: Integers are encoded as floats. Consider whether they may actually be enums.

4.2 Lints for Outliers and Scaling

Outlier and scaling data linters attempt to identify likely outliers and scaling issues in data.

◦ Unnormalized feature: The values of this feature vary widely. Consider normalizing them.

◦ Tailed distribution detector: Extreme values that significantly affect the mean were detected. Ex-
amine histograms of the data to ensure they follow expected distributions.

◦ Uncommon list length: A feature is composed of a list of elements, with most instances consisting
of a specific list length. However, some instances have a different length.Ensure that the data are
materialized as expected and the model can handle data lists of varying length.

◦ Uncommon sign detector: The data includes some values that have a different sign (+/-) from the
rest of the data (e.g., -9999), which can affect training. If these are special markers in the data,
consider replacing them with a more neutral value (e.g., an empty or average value).

4.3 Packaging Error Lints

Packaging error data linters identify problems with the organization of the data. Some of these issues
may be caught in an early data cleaning or validation step.

◦ Duplicate values: Duplicate rows of data have been identified. Verify that there is no error in data
generation.

◦ Empty examples: Empty examples have been detected. Consider removing them and verifying
correctness of your data generation process. (Note that the entire example must be empty; empty
features suggest correct use of missing-value semantics.)

5 Evaluation

To evaluate our data linter, we performed two studies: We invited eight software engineers to try the
data linter on the training data of a model they were developing, and we ran the data linter on 600
publicly available Kaggle data sets.
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5.1 End-User Evaluation

Eight different software engineers applied the data linter to training data for models under develop-
ment. These software engineers ranged from interns who were relatively new to machine learning
(and were tasked with developing new models), to a software engineer working with mature machine
learning models. In all cases, the participants were instructed on use of the tool, then interviewed to
understand the overall utility of the tool and its results.

In the most promising result, a data linter suggestion (normalize inputs) led to a DNN model’s preci-
sion increasing from 0.48 to 0.59; this improvement was after the engineer had already automatically
tuned the model’s hyperparameters. This user was unaware of the benefits of normalizing inputs to a
DNN, so the tool also served as an educational aid. The data linter helped another developer identify
duplicate training data that had previously gone unnoticed.

In many cases, the linter’s suggestions prompted further analysis and consideration of the feature
engineering choices made for their data, vis-a-vis their chosen model, suggesting its utility in focusing
development and debugging efforts.

One common request from users was to be able to silence lints, either for specific inputs or specific
lint types. This is a common feature in other linters, and would be useful for this tool, as well.
Furthermore, in some cases, the user may already have proper feature transformations in their model,
meaning the linter warnings are unnecessary. Accordingly, data linting may be useful both before
and after feature transformation, with lints “fixed” by feature transforms being removed prior to
presentation to the user.

In terms of performance, for medium-sized datasets of O(100k) examples, we observed that con-
stant time/space (i.e. stats-based) LintDetectors completed in seconds; linear time, sub-linear space
Detectors finished in minutes; and linear space/time Detectors (i.e. duplicate/enum) took up to sev-
eral hours (these timings are with a few CPUs running in parallel). With the exception of the latter
LintDetectors, which use a particularly inefficient hashing technique, we find that straightforward
implementations perform reasonably well, at scale. We also note that the set of LintDetectors that
run can be configured by the user in accordance with their tolerance for latency.

5.2 Kaggle Data Set Analysis

To test the linter on a broader set of data, we worked with Kaggle to obtain 600 publicly available
CSV data sets. We loaded each CSV into a table using the popular Python pandas package, and used
its default, automatic data type inference capability (mimicking the workflow of novice ML users).
This use case also provided an ideal context for testing a data linter: pandas’ column type inference
algorithm always chooses the most flexible type (e.g., a misplaced string in an otherwise int column
yields a string column), meaning the data linter should automatically uncover data in formats that
are less than ideal for a model. During development of the lints, we used 40 of these data sets to help
inform the types of data lints to create.

The most common lints triggered, and the number of lints per data set, can be viewed in figs. 1 and 2.

Overall, only about 7% of the data sets in this study had no data lints, and most data sets presented
multiple data lints. These findings may include some false positives resulting from the fact that
data types were inferred by pandas, rather than explicitly declared. In aggregate, however, these
results suggest the utility of automated data linting for focusing developer effort during preparation
of data for ML models. Additionally, we note that the number of lints identified is still manageable,
with a mode of about 4 lints per data set; users are unlikely to be overwhelmed with this amount of
information. For datasets with thousands of features and repetitive detections, it could be worthwhile
to modify the lint output so users can view summaries of detected lint classes.

To determine the prevalence of issues that were not identified by our tool, we randomly sampled
and manually examined 35 data sets (these were not previously referenced when defining lints). We
found no false negatives, but acknowledge that the validity of this analysis is limited by our own
knowledge of what could be considered problematic for a generic ML system.
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Figure 1: Histogram of Number of Data Lints Per Data Set, Across 600 Kaggle Data Sets.
Interestingly, only about 7% of the data sets we examined as part of this study had zero data lints and
were thus “lint free.” The other 93% had at least one data lint, suggesting the utility of automated
checking.

Figure 2: Frequency of Data Lints Across 600 Kaggle Data Sets. Some data issues are relatively
common, including encoding numeric values as strings and issues around encoding enumerated
values. But even rarer issues such as empty examples or potentially problematic encoding of postal
codes do occur in the real-world data sets.

6 Conclusion and Future Work

Our development of a data linter suggests that the concept and tool can be useful to identify ways
model quality could be improved through specific feature transforms, and to help focus developer
effort and attention.

There are a number of directions in which this work may be extended. These include implementing
more scalable algorithms in current lint detectors and developing new detectors for both DNNs and
other model types. Furthermore, the ability to automatically infer the semantic meaning/intent of a
feature could also plug directly into a tool for (semi-)automated model construction (e.g., [8, 17]).
In this case, the data linter could inspect the training data to produce specific feature engineering
recommendations that can be automatically applied during model construction.
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